Do you want to publish a course? Click here

Pangea: Monolithic Distributed Storage for Data Analytics

115   0   0.0 ( 0 )
 Added by Jia Zou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Storage and memory systems for modern data analytics are heavily layered, managing shared persistent data, cached data, and non-shared execution data in separate systems such as distributed file system like HDFS, in-memory file system like Alluxio and computation framework like Spark. Such layering introduces significant performance and management costs for copying data across layers redundantly and deciding proper resource allocation for all layers. In this paper we propose a single system called Pangea that can manage all data---both intermediate and long-lived data, and their buffer/caching, data placement optimization, and failure recovery---all in one monolithic storage system, without any layering. We present a detailed performance evaluation of Pangea and show that its performance compares favorably with several widely used layered systems such as Spark.



rate research

Read More

Erasure codes are increasingly being studied in the context of implementing atomic memory objects in large scale asynchronous distributed storage systems. When compared with the traditional replication based schemes, erasure codes have the potential of significantly lowering storage and communication costs while simultaneously guaranteeing the desired resiliency levels. In this work, we propose the Storage-Optimized Data-Atomic (SODA) algorithm for implementing atomic memory objects in the multi-writer multi-reader setting. SODA uses Maximum Distance Separable (MDS) codes, and is specifically designed to optimize the total storage cost for a given fault-tolerance requirement. For tolerating $f$ server crashes in an $n$-server system, SODA uses an $[n, k]$ MDS code with $k=n-f$, and incurs a total storage cost of $frac{n}{n-f}$. SODA is designed under the assumption of reliable point-to-point communication channels. The communication cost of a write and a read operation are respectively given by $O(f^2)$ and $frac{n}{n-f}(delta_w+1)$, where $delta_w$ denotes the number of writes that are concurrent with the particular read. In comparison with the recent CASGC algorithm, which also uses MDS codes, SODA offers lower storage cost while pays more on the communication cost. We also present a modification of SODA, called SODA$_{text{err}}$, to handle the case where some of the servers can return erroneous coded elements during a read operation. Specifically, in order to tolerate $f$ server failures and $e$ error-prone coded elements, the SODA$_{text{err}}$ algorithm uses an $[n, k]$ MDS code such that $k=n-2e-f$. SODA$_{text{err}}$ also guarantees liveness and atomicity, while maintaining an optimized total storage cost of $frac{n}{n-f-2e}$.
To achieve reliability in distributed storage systems, data has usually been replicated across different nodes. However the increasing volume of data to be stored has motivated the introduction of erasure codes, a storage efficient alternative to replication, particularly suited for archival in data centers, where old datasets (rarely accessed) can be erasure encoded, while replicas are maintained only for the latest data. Many recent works consider the design of new storage-centric erasure codes for improved repairability. In contrast, this paper addresses the migration from replication to encoding: traditionally erasure coding is an atomic operation in that a single node with the whole object encodes and uploads all the encoded pieces. Although large datasets can be concurrently archived by distributing individual object encodings among different nodes, the network and computing capacity of individual nodes constrain the archival process due to such atomicity. We propose a new pipelined coding strategy that distributes the network and computing load of single-object encodings among different nodes, which also speeds up multiple object archival. We further present RapidRAID codes, an explicit family of pipelined erasure codes which provides fast archival without compromising either data reliability or storage overheads. Finally, we provide a real implementation of RapidRAID codes and benchmark its performance using both a cluster of 50 nodes and a set of Amazon EC2 instances. Experiments show that RapidRAID codes reduce a single objects coding time by up to 90%, while when multiple objects are encoded concurrently, the reduction is up to 20%.
We present Kaleidoscope an innovative system that supports live forensics for application performance problems caused by either individual component failures or resource contention issues in large-scale distributed storage systems. The design of Kaleidoscope is driven by our study of I/O failures observed in a peta-scale storage system anonymized as PetaStore. Kaleidoscope is built on three key features: 1) using temporal and spatial differential observability for end-to-end performance monitoring of I/O requests, 2) modeling the health of storage components as a stochastic process using domain-guided functions that accounts for path redundancy and uncertainty in measurements, and, 3) observing differences in reliability and performance metrics between similar types of healthy and unhealthy components to attribute the most likely root causes. We deployed Kaleidoscope on PetaStore and our evaluation shows that Kaleidoscope can run live forensics at 5-minute intervals and pinpoint the root causes of 95.8% of real-world performance issues, with negligible monitoring overhead.
Input data for applications that run in cloud computing centres can be stored at distant repositories, often with multiple copies of the popular data stored at many sites. Locating and retrieving the remote data can be challenging, and we believe that federating the storage can address this problem. A federation would locate the closest copy of the data on the basis of GeoIP information. Currently we are using the dynamic data federation Dynafed, a software solution developed by CERN IT. Dynafed supports several industry standards for connection protocols like Amazons S3, Microsofts Azure, as well as WebDAV and HTTP. Dynafed functions as an abstraction layer under which protocol-dependent authentication details are hidden from the user, requiring the user to only provide an X509 certificate. We have setup an instance of Dynafed and integrated it into the ATLAS data distribution management system. We report on the challenges faced during the installation and integration. We have tested ATLAS analysis jobs submitted by the PanDA production system and we report on our first experiences with its operation.
We study the secrecy of a distributed storage system for passwords. The encoder, Alice, observes a length-n password and describes it using two hints, which she then stores in different locations. The legitimate receiver, Bob, observes both hints. The eavesdropper, Eve, sees only one of the hints; Alice cannot control which. We characterize the largest normalized (by n) exponent that we can guarantee for the number of guesses it takes Eve to guess the password subject to the constraint that either the number of guesses it takes Bob to guess the password or the size of the list that Bob must form to guarantee that it contain the password approach 1 as n tends to infinity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا