Do you want to publish a course? Click here

Shell-Model Monte Carlo Simulations of Pairing in Few-Fermion Systems

115   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a trapped system of fermions with an attractive zero-range two-body interaction using the Shell-Model Monte Carlo method. The method provides {em ab initio} results in the low $N$ limit where mean-field theory is not applicable. The energy and pairing properties are presented as functions of interaction strength, particle number, and temperature. In the interesting region where typical matrix elements of the two-body interaction are comparable to the level spacing of the trap we find large odd-even effects and signatures of shell structure. As a function of temperature, we observe the disappearance of these effects as in a phase transition.



rate research

Read More

Rotational motion of heated 72-Ge is studied within the microscopic Shell Model Monte Carlo approach. We investigate the the angular momentum alignment and nuclear pairing correlations associated with J-pi Cooper pairs as a function of the rotational frequency and temperature. The reentrance of pairing correlations with temperature is predicted at high rotational frequencies. It manifests itself through the anomalous behavior of specific heat and level density.
415 - Boris Krippa 2014
Functional renormalisation group approach is applied to a imbalanced many- fermion system with a short-range attractive force. Composite boson field is introduced to describe the pairing between different flavour fermions. A set of approximate flow equations for the effective couplings is derived and solved. We identify the critical values of mass and particle number density mismatch when the system undergoes a phase transition to a normal state and determine the phase diagram both at unitary regime and nearby.
The `dynamic Hubbard Hamiltonian describes interacting fermions on a lattice whose on-site repulsion is modulated by a coupling to a fluctuating bosonic field. We investigate one such model, introduced by Hirsch, using the determinant Quantum Monte Carlo method. Our key result is that the extended s-wave pairing vertex, repulsive in the usual static Hubbard model, becomes attractive as the coupling to the fluctuating Bose field increases. The sign problem prevents us from exploring a low enough temperature to see if a superconducting transition occurs. We also observe a stabilization of antiferromagnetic correlations and the Mott gap near half-filling, and a near linear behavior of the energy as a function of particle density which indicates a tendency toward phase separation.
Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.
The undoped three-orbital spin fermion model for the Fe-based superconductors is studied via Monte Carlo techniques in two-dimensional clusters. At low temperatures, the magnetic and one-particle spectral properties are in good agreement with neutron and photoemission experiments. Our most important results are the resistance vs. temperature curves that display all the features experimentally observed in BaFe$_2$As$_2$ detwinned single crystals (under uniaxial stress), including a low-temperature anisotropy between the two directions followed by a peak at the magnetic ordering temperature, here induced by short-range spin order and concomitant Fermi Surface orbital order.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا