Do you want to publish a course? Click here

Pairing in Asymmetric Many-Fermion Systems: Functional Renormalisation Group Approach

428   0   0.0 ( 0 )
 Added by Boris Krippa
 Publication date 2014
  fields Physics
and research's language is English
 Authors Boris Krippa




Ask ChatGPT about the research

Functional renormalisation group approach is applied to a imbalanced many- fermion system with a short-range attractive force. Composite boson field is introduced to describe the pairing between different flavour fermions. A set of approximate flow equations for the effective couplings is derived and solved. We identify the critical values of mass and particle number density mismatch when the system undergoes a phase transition to a normal state and determine the phase diagram both at unitary regime and nearby.



rate research

Read More

126 - Boris Krippa 2006
The application of the exact renormalisation group to symmetric as well as asymmetric many-fermion systems with a short-range attractive force is studied. Assuming an ansatz for the effective action with effective bosons, describing pairing effects a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations has been derived. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop effects are omitted. The calculations with two different forms of the regulator are shown to lead to a similar results. We find that, being quite small in the case of the symmetric many-fermion system the corrections to mean field approximation becomes more important with increasing mass asymmetry.
The exact renormalization group methods is applied to many fermion systems with short-range attractive force. The strength of the attractive fermion-fermion interaction is determined from the vacuum scattering length. A set of approximate flow equations is derived including fermionic and bosonic fluctuations. The numerical solutions show a phase transition to a gapped phase. The inclusion of bosonic fluctuations is found to be significant only in the small-gap regime.
71 - Boris Krippa 2015
The Functional Renormalisation Group approach is applied the imbalanced many-fermion systems. The system is found to exhibit the first order phase transition from the superfluid to normal phase when the density (chemical potential) mismatch becomes larger then some critical values. The perspectives of using fermionic cold atoms to study nuclear/quark matter is briefly discussed.
We apply a functional renormalisation group to systems of four bosonic atoms close to the unitary limit. We work with a local effective action that includes a dynamical trimer field and we use this field to eliminate structures that do not correspond to the Faddeev-Yakubovsky equations. In the physical limit, we find three four-body bound states below the shallowest three-body state. The values of the scattering lengths at which two of these states become bound are in good agreement with exact solutions of the four-body equations and experimental observations. The third state is extremely shallow. During the evolution we find an infinite number of four-body states based on each three-body state which follow a double-exponential pattern in the running scale. None of the four-body states shows any evidence of dependence on a four-body parameter.
129 - Boris Krippa 2006
The application of the nonperturbative renormalisation group approach to a system with two fermion species is studied. Assuming a simple ansatz for the effective action with effective bosons, describing pairing effects we derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The case of two fermions with different masses but coinciding Fermi surfaces is considered. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The large mass difference is found to disfavour the formation of pairs. The mean-field results are recovered if the effects of boson loops are omitted. While the boson fluctuation effects were found to be negligible for large values of $p_{F} a$ they become increasingly important with decreasing $p_{F} a$ thus making the mean field description less accurate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا