Do you want to publish a course? Click here

Spreading of EGF Receptor Activity into EGF-free Regions and Molecular Therapies of Cancer

153   0   0.0 ( 0 )
 Added by Garrit Jentsch
 Publication date 2008
  fields Biology
and research's language is English




Ask ChatGPT about the research

The primary activation of the epidermal growth factor receptor (EGFR) has become a prominent target for molecular therapies against several forms of cancer. But despite considerable progress during the last years, many of its aspects remain poorly understood. Experiments on lateral spreading of receptor activity into ligand-free regions challenge the current standard models of EGFR activation. Here, we propose and study a theoretical model, which explains spreading into ligand-free regions without introducing any new, unknown kinetic parameters. The model exhibits bistability of activity, induced by a generic reaction mechanism, which consists of activation via dimerization and deactivation via a Michaelis-Menten reaction. It possesses slow propagating front solutions and faster initial transients. We analyze relevant experiments and find that they are in quantitative accordance with the fast initial modes of spreading, but not with the slow propagating front. We point out that lateral spreading of activity is linked to pathological levels of persistent receptor activity as observed in cancer cells and exemplify uses of this link for the design and quick evaluation of molecular therapies targeting primary activation of EGFR.



rate research

Read More

There is a widening recognition that cancer cells are products of complex developmental processes. Carcinogenesis and metastasis formation are increasingly described as systems-level, network phenomena. Here we propose that malignant transformation is a two-phase process, where an initial increase of system plasticity is followed by a decrease of plasticity at late stages of carcinogenesis as a model of cellular learning. We describe the hallmarks of increased system plasticity of early, tumor initiating cells, such as increased noise, entropy, conformational and phenotypic plasticity, physical deformability, cell heterogeneity and network rearrangements. Finally, we argue that the large structural changes of molecular networks during cancer development necessitate a rather different targeting strategy in early and late phase of carcinogenesis. Plastic networks of early phase cancer development need a central hit, while rigid networks of late stage primary tumors or established metastases should be attacked by the network influence strategy, such as by edgetic, multi-target, or allo-network drugs. Cancer stem cells need special diagnosis and targeting, since their dormant and rapidly proliferating forms may have more rigid, or more plastic networks, respectively. The extremely high ability to change their rigidity/plasticity may be a key differentiating hallmark of cancer stem cells. The application of early stage-optimized anti-cancer drugs to late-stage patients may be a reason of many failures in anti-cancer therapies. Our hypotheses presented here underlie the need for patient-specific multi-target therapies applying the correct ratio of central hits and network influences -- in an optimized sequence.
Signaling pathways serve to communicate information about extracellular conditions into the cell, to both the nucleus and cytoplasmic processes to control cell responses. Genetic mutations in signaling network components are frequently associated with cancer and can result in cells acquiring an ability to divide and grow uncontrollably. Because signaling pathways play such a significant role in cancer initiation and advancement, their constituent proteins are attractive therapeutic targets. In this review, we discuss how signaling pathway modeling can assist with identifying effective drugs for treating diseases, such as cancer. An achievement that would facilitate the use of such models is their ability to identify controlling biochemical parameters in signaling pathways, such as molecular abundances and chemical reaction rates, because this would help determine effective points of attack by therapeutics.
We study kinetic model of Nuclear Receptor Binding to Promoter Regions. This model is written as a system of ordinary differential equations. Model reduction techniques have been used to simplify chemical kinetics.In this case study, the technique of Pseudo-first order approximation is applied to simplify the reaction rates. CellDesigner has been used to draw the structures of chemical reactions of Nuclear Receptor Binding to Promoter Regions. After model reduction, the general analytical solution for reduced model is given and the number of species and reactions are reduced from 9 species and 6 reactions to 6 species and 5 reactions.
The progesterone receptor (PR) mediates progesterone regulation of female reproductive physiology, as well as gene transcription in non-reproductive tissues, such as brain, bone, lung and vasculature, in both women and men. An unusual property of progesterone is its high affinity for the mineralocorticoid receptor (MR), which regulates electrolyte transport in the kidney in humans and other terrestrial vertebrates. In humans, rats, alligators and frogs, progesterone antagonizes activation of the MR by aldosterone, the physiological mineralocorticoid in terrestrial vertebrates. In contrast, in elephant shark, ray-finned fishes and chickens, progesterone activates the MR. Interestingly, cartilaginous fishes and ray-finned fishes do not synthesize aldosterone, raising the question of which steroid(s) activate the MR in cartilaginous fishes and ray-finned fishes. The simpler synthesis of progesterone, compared to cortisol and other corticosteroids, makes progesterone a candidate physiological activator of the MR in elephant sharks and ray-finned fishes. Elephant shark and ray-finned fish MRs are expressed in diverse tissues, including heart, brain and lung, as well as, ovary and testis, two reproductive tissues that are targets for progesterone, which together suggests a multi-faceted physiological role for progesterone activation of the MR in elephant shark and ray-finned fish. The functional consequences of progesterone as an antagonist of some terrestrial vertebrate MRs and as an agonist of fish and chicken MRs are not fully understood. Indeed, little is known of physiological activities of progesterone via any vertebrate MR.
Enzymes within biochemical pathways are often colocalized, yet the consequences of specific spatial enzyme arrangements remain poorly understood. We study the impact of enzyme arrangement on reaction efficiency within a reaction-diffusion model. The optimal arrangement transitions from a cluster to a distributed profile as a single parameter, which controls the probability of reaction versus diffusive loss of pathway intermediates, is varied. We introduce the concept of enzyme exposure to explain how this transition arises from the stochastic nature of molecular reactions and diffusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا