Do you want to publish a course? Click here

Current star formation in early-type galaxies and the K+A phenomenon

81   0   0.0 ( 0 )
 Added by Joe Helmboldt
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of an effort to identify and study a sample of the likely progenitors of elliptical (E) and lenticular (S0) K+A galaxies. To achieve this, we have searched a sample ~11,000 nearby (m(r)<16) early-type galaxies selected by morphology from the Sloan Digital Sky Survey (SDSS) Main spectroscopic sample for actively star-forming E and S0 galaxies. Using emission line ratios and visual inspection of SDSS g-band images, we have identified 335 galaxies from the SDSS Fourth Data Release (DR4) as actively star-forming E and S0 galaxies. These galaxies make up about 3% of the total early-type sample and less than 1% of all Main galaxies with m(r)<16. We also identified a sample of ~400 K+A galaxies from DR4 with m(r)<16; more than half of these are E and S0 galaxies. We find that star-forming early-type galaxies and K+A galaxies have similar mass distributions; they are on average less massive than typical early-type galaxies but more massive than the average star-forming galaxy. Both of these types of galaxies are found in higher fractions among all galaxies in lower density environments. The fractions of star-forming E and S0 galaxies and E and S0 K+A galaxies depend on environment in nearly the same way. Model spectra fit to the stellar continua of the star-forming E and S0 galaxies showed that their properties are consistent with star formation episodes of <1 Gyr in duration. The modelling results imply that on average, the star formation episodes will increase the stellar masses by about 4%. There is also evidence that the star-forming regions within these galaxies are rotationally supported.



rate research

Read More

We derive the stacked 1.4 GHz flux from FIRST (Faint Images of the Radio Sky at Twenty Centimeters) survey for 811 K+A galaxies selected from the SDSS DR7. For these objects we find a mean flux density of $56pm 9$ $mu$Jy. A similar stack of radio-quiet white dwarfs yields an upper limit of 43 $mu$Jy at a 5$sigma$ significance to the flux in blank regions of the sky. This implies an average star formation rate of 1.6 $pm$ 0.3 M$_{odot}$ year$^{-1}$ for K+A galaxies. However the majority of the signal comes from $sim$4% of K+A fields that have aperture fluxes above the $5sigma$ noise level of the FIRST survey. A stack of the remaining galaxies shows little residual flux consistent with an upper limit on star formation of 1.3 M$_{odot}$ year$^{-1}$. Even for a subset of 456 `young (spectral ages $<$ 250 Myr) K+A galaxies we find that the stacked 1.4 GHz flux is consistent with no current star formation. Our data suggest that the original starburst has been terminated in the majority of K+A galaxies, but that this may represent part of a duty cycle where a fraction of these galaxies may be active at a given moment with dusty starbursts and AGNs being present.
Motivated by recent progress in the study of early-type galaxies owing to technological advances, the launch of new space telescopes and large ground-based surveys, we attempt a short review of our current understanding of the recent star-formation activity in such intriguing galactic systems.
273 - L. M. Young 2008
Many early-type galaxies are detected at 24 to 160 micron but the emission is usually dominated by an AGN or heating from the evolved stellar population. Here we present MIPS observations of a sample of elliptical and lenticular galaxies which are rich in cold molecular gas, and we investigate how much of the MIR to FIR emission could be due to star formation activity. The 24 micron images show a rich variety of structures, including nuclear point sources, rings, disks, and smooth extended emission, and comparisons to matched-resolution CO and radio continuum images suggest that the bulk of the 24 micron emission can be traced to star formation. The star formation efficiencies are comparable to those found in normal spirals. Some future directions for progress are also mentioned.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
492 - Andrea Negri 2015
High resolution 2D hydrodynamical simulations describing the evolution of the hot ISM in axisymmetric two-component models of early-type galaxies well reproduced the observed trends of the X-ray luminosity ($L_mathrm{x}$) and temperature ($T_mathrm{x}$) with galaxy shape and rotation, however they also revealed the formation of an exceedingly massive cooled gas disc in rotating systems. In a follow-up of this study, here we investigate the effects of star formation in the disc, including the consequent injection of mass, momentum and energy in the pre-existing interstellar medium. It is found that subsequent generations of stars originate one after the other in the equatorial region; the mean age of the new stars is $> 5$ Gyr, and the adopted recipe for star formation can reproduce the empirical Kennicutt-Schmidt relation. The results of the previous investigation without star formation, concerning $L_mathrm{x}$ and $T_mathrm{x}$ of the hot gas, and their trends with galactic shape and rotation, are confirmed. At the same time, the consumption of most of the cold gas disc into new stars leads to more realistic final systems, whose cold gas mass and star formation rate agree well with those observed in the local universe. In particular, our models could explain the observation of kinematically aligned gas in massive, fast-rotating early-type galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا