Do you want to publish a course? Click here

Method for Full Bloch-Sphere Control of a Localized Spin via a Single Electrical Gate

104   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the dependence on an applied electric field of the g tensor of a single electron in a self-assembled InAs/GaAs quantum dot. We identify dot sizes and shapes for which one in-plane component of the g tensor changes sign for realistic electric fields, and show this should permit full Bloch-sphere control of the electron spin in the quantum dot using only a static magnetic field and a single vertical electric gate.



rate research

Read More

Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. One of the critical challenges to develop NV-based quantum operation platforms results from the difficulty to locally address the quantum spin states of individual NV spins in a scalable, energy-efficient manner. Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems. By utilizing electrically generated spin currents, we are able to achieve efficient tuning of magnetic damping and the amplitude of the dipole fields generated by a micrometer-sized resonant magnet, enabling electrical control of the Rabi oscillation frequency of NV spins. Our results highlight the potential of NV centers in designing functional hybrid solid-state systems for next-generation quantum-information technologies. The demonstrated coupling between the NV centers and the propagating spin waves harbored by a magnetic insulator further points to the possibility to establish macroscale entanglement between distant spin qubits.
Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas and demonstrations of quantum information processing. Scaling up these ideas requires controlling individual nuclei, which can be detected when coupled to an electron. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods relied upon transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects the nuclear coherence. Here we demonstrate the coherent quantum control of a single antimony (spin-7/2) nucleus, using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction, in the presence of lattice strain, results in coherent nuclear spin transitions. The spin dephasing time, 0.1 seconds, surpasses by orders of magnitude those obtained via methods that require a coupled electron spin for electrical drive. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots could pave the way to scalable nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.
We report a tunable spin mixing conductance, up to $pm 22%$, in a Y${}_{3}$Fe${}_{5}$O${}_{12}$/Platinum (YIG/Pt) bilayer.This control is achieved by applying a gate voltage with an ionic gate technique, which exhibits a gate-dependent ferromagnetic resonance line width. Furthermore, we observed a gate-dependent spin pumping and spin Hall angle in the Pt layer, which is also tunable up to $pm$ 13.6%. This work experimentally demonstrates spin current control through spin pumping and a gate voltage in a YIG/Pt bilayer, demonstrating the crucial role of the interfacial charge density for the spin transport properties in magnetic insulator/heavy metal bilayers.
144 - M. Kugler , T. Andlauer , T. Korn 2009
We have investigated spin and carrier dynamics of resident holes in high-mobility two-dimensional hole systems in GaAs/Al$_{0.3}$Ga$_{0.7}$As single quantum wells at temperatures down to 400 mK. Time-resolved Faraday and Kerr rotation, as well as time-resolved photoluminescence spectroscopy are utilized in our study. We observe long-lived hole spin dynamics that are strongly temperature dependent, indicating that in-plane localization is crucial for hole spin coherence. By applying a gate voltage, we are able to tune the observed hole g factor by more than 50 percent. Calculations of the hole g tensor as a function of the applied bias show excellent agreement with our experimental findings.
Fundamental physical properties limiting the performance of spin field effect transistors are compared to those of ordinary (charge-based) field effect transistors. Instead of raising and lowering a barrier to current flow these spin transistors use static spin-selective barriers and gate control of spin relaxation. The different origins of transistor action lead to distinct size dependences of the power dissipation in these transistors and permit sufficiently small spin-based transistors to surpass the performance of charge-based transistors at room temperature or above. This includes lower threshold voltages, smaller gate capacitances, reduced gate switching energies and smaller source-drain leakage currents.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا