Do you want to publish a course? Click here

Slipping friction of an optically and magnetically manipulated microsphere rolling at a glass-water interface

106   0   0.0 ( 0 )
 Added by Rodney Agayan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The motion of submerged magnetic microspheres rolling at a glass-water interface has been studied using magnetic rotation and optical tweezers combined with bright-field microscopy particle tracking techniques. Individual microspheres of varying surface roughness were magnetically rotated both in and out of an optical trap to induce rolling, along either plain glass cover slides or glass cover slides functionalized with polyethylene glycol. It has been observed that the manipulated microspheres exhibited nonlinear dynamic rolling-while-slipping motion characterized by two motional regimes: At low rotational frequencies, the speed of microspheres free-rolling along the surface increased proportionately with magnetic rotation rate; however, a further increase in the rotation frequency beyond a certain threshold revealed a sharp transition to a motion in which the microspheres slipped with respect to the external magnetic field resulting in decreased rolling speeds. The effects of surface-microsphere interactions on the position of this threshold frequency are posed and investigated. Similar experiments with microspheres rolling while slipping in an optical trap showed congruent results.

rate research

Read More

A bicycle wheel that was initially spinning freely was placed in contact with a rough surface and a digital film was made of its motion. Using Tracker software for video analysis, we obtained the velocity vectors for several points on the wheel, in the frame of reference of the laboratory as well as in a relative frame of reference having as its origin the wheel`s center of mass. The velocity of the wheel`s point of contact with the floor was also determined obtaining then a complete picture of the kinematic state of the wheel in both frames of reference. An empirical approach of this sort to problems in mechanics can contribute to overcoming the considerable difficulties they entail.
An atom moving in a vacuum at constant velocity and parallel to a surface experiences a frictional force induced by the dissipative interaction with the quantum fluctuations of the electromagnetic field. We show that the combination of nonequilibrium dynamics, anomalous Doppler effect and spin-momentum locking of light mediates an intriguing interplay between the atoms translational and rotational motion. In turn, this deeply affects the drag force in a way that is reminiscent of classical rolling friction. Our fully non-Markovian and nonequilibrium description reveals counterintuitive features characterizing the atoms velocity-dependent rotational dynamics. These results prompt interesting directions for tuning the interaction and for investigating nonequilibrium dynamics as well as the properties of confined light.
The apparent conflict between general relativity and quantum mechanics remains one of the unresolved mysteries of the physical world. According to recent theories, this conflict results in gravity-induced quantum state reduction of Schrodinger cats, quantum superpositions of macroscopic observables. In recent years, great progress has been made in cooling micromechanical resonators towards their quantum mechanical ground state. This work is an important step towards the creation of Schrodinger cats in the laboratory, and the study of their destruction by decoherence. A direct test of the gravity-induced state reduction scenario may therefore be within reach. However, a recent analysis shows that for all systems reported to date, quantum superpositions are destroyed by environmental decoherence long before gravitational state reduction takes effect. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the center-of-mass motion from room temperature to a minimum temperature of 1.5 mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature. After cooling, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum. During free-fall, light scattering and other sources of environmental decoherence are absent, so this system is ideal for studying gravitational state reduction. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales, measure the impact of a single air molecule, and even produce Schrodinger cats of living organisms.
The effect of thermal fluctuations near a contact line of a liquid interface partially wetting an impenetrable substrate is studied analytically and numerically. Promoting both the interface profile and the contact line position to random variables, we explore the equilibrium properties of the corresponding fluctuating contact line problem based on an interfacial Hamiltonian involving a contact binding potential. To facilitate an analytical treatment we consider the case of a one-dimensional interface. The effective boundary condition at the contact line is determined by a dimensionless parameter that encodes the relative importance of thermal energy and substrate energy at the microscopic scale. We find that this parameter controls the transition from a partially wetting to a pseudo-partial wetting state, the latter being characterized by a thin prewetting film of fixed thickness. In the partial wetting regime, instead, the profile typically approaches the substrate via an exponentially thinning prewetting film. We show that, independently of the physics at the microscopic scale, Youngs angle is recovered sufficiently far from the substrate. The fluctuations of the interface and of the contact line give rise to an effective disjoining pressure, exponentially decreasing with height. Fluctuations therefore provide a regularization of the singular contact forces occurring in the corresponding deterministic problem.
The problem of a disc or cylinder initially rolling with slipping on a surface and subsequently transitioning to rolling without slipping is often cited in textbooks. The following experiment serves to clearly demonstrate the transition from rolling with slipping to rolling without slipping. In the experiment, a rotating bicycle wheel was placed in contact with a horizontal surface and the wheel in motion was tracked using Tracker video analysis software [8]. The software created linear velocity plots for the centre of mass and a point on the circumference as well as a plot of the angular velocity of the rotating wheel. The time evolution plots created by Tracker clearly illustrate the transition between the two types of motion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا