Do you want to publish a course? Click here

The Quasar-frame Velocity Distribution of Narrow CIV Absorbers

520   0   0.0 ( 0 )
 Added by Daniel Nestor
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a survey for narrow (FWHM < 600 km/s) CIV absorption lines in a sample of bright quasars at redshifts $1.8 le z < 2.25$ in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow CIV absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad MgII emission line, and then measure the absorbers quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find a substantial number ($ge 43pm6$ per cent) of absorbers with REW $> 0.3$ AA in the velocity range +750 km/s $la v la $ +12000 km/s are intrinsic to the AGN outflow. This `outflow fraction peaks near $v=+2000$ km/s with a value of $f_{outflow} simeq 0.81 pm 0.13$. At velocities below $v approx +2000$ km/s the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disk. Furthermore, we find that outflow-absorbers are on average broader and stronger than cosmologically-intervening systems. Finally, we find that $sim 14$ per cent of the quasars in our sample exhibit narrow, outflowing CIV absorption with REW $> 0.3$AA, slightly larger than that for broad absorption line systems.



rate research

Read More

We use the observed cumulative statistics of CIV absorbers and dark matter halos to infer the distribution of CIV-absorbing gas relative to galaxies at redshifts $0!leq!z!leq!5$. We compare the cosmic incidence $dN/dX$ of CIV absorber populations and galaxy halos, finding that massive $L geq L_{star}$ halos alone cannot account for all the observed $W_r geq 0.05$~{AA} absorbers. However, the $dN/dX$ of lower mass halos exceeds that of $W_r geq 0.05$~{AA} absorbers. We also estimate the characteristic gas radius of absorbing structures required for the observed CIV $dN/dX$, assuming each absorber is associated with a single galaxy halo. The $W_r geq 0.3$~{AA} and $W_r geq 0.6$~{AA} CIV gas radii are $sim30-70%$ ($sim20-40%$) of the virial radius of $L_{star}$ ($0.1L_{star}$) galaxies, and the $W_r geq 0.05$~{AA} gas radius is $sim100-150%$($sim60-100%$) of the virial radius of $L_{star}$ ($0.1L_{star}$) galaxies. For stronger absorbers, the gas radius relative to virial radius rises across Cosmic Noon and falls afterwards, while for weaker absorbers, the relative gas radius declines across Cosmic Noon and then dramatically rises at $z!<!1$. A strong luminosity-dependence of gas radius implies highly extended CIV envelopes around massive galaxies before Cosmic Noon, while a luminosity-independent gas radius implies highly extended envelopes around dwarf galaxies after Cosmic Noon. From available absorber-galaxy and CIV evolution data, we favor a scenario in which low-mass galaxies enrich the volume around massive galaxies at early epochs and propose that the outer halo gas ($>0.5R_v$) was produced primarily in ancient satellite dwarf galaxy outflows, while the inner halo gas ($<0.5R_v$) originated from the central galaxy and persists as recycled accreting gas.
131 - Jessica L. Evans 2013
We have identified 469 MgII doublet systems having W_r >= 0.02 {AA} in 252 Keck/HIRES and UVES/VLT quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak MgII systems (0.02 {AA} <= W_r < 0.3 {AA}), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z ~ 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak MgII absorbers seem to vanish above z ~ 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 10^6 - 10^9 per Mpc^3 for spherical geometries and 10^2 - 10^5 per Mpc^3 for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (W_r >= 1.0 {AA}) absorbers. For weak absorption, dN/dz toward bright quasars is ~ 25% higher than toward faint quasars (10 sigma at low redshift, 0.4 <= z <= 1.4, and 4 sigma at high redshift, 1.4 < z <= 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being ~ 20% higher than toward bright quasars (also 10 sigma at low redshift and 4 sigma at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dzs dependence on quasar luminosity.
111 - Kathy L. Cooksey 2012
We have vastly increased the CIV statistics at intermediate redshift by surveying the thousands of quasars in the Sloan Digital Sky Survey Data-Release 7. We visually verified over 16,000 CIV systems with 1.46 < z < 4.55---a sample size that renders Poisson error negligible. Detailed Monte Carlo simulations show we are approximately 50% complete down to rest equivalent widths W_r ~ 0.6 AA. We analyzed the sample as a whole and in ten small redshift bins with approximately 1500 doublets each. The equivalent width frequency distributions f(W_r) were well modeled by an exponential, with little evolution in shape. In contrast with previous studies that modeled the frequency distribution as a single power law, the fitted exponential gives a finite mass density for the CIV ions. The co-moving line density dN_CIV/dX evolved smoothly with redshift, increasing by a factor of 2.37+/-0.09 from z = 4.55 to 1.96, then plateauing at dN_CIV/dX ~ 0.34 for z = 1.96 to 1.46. Comparing our SDSS sample with z < 1 (ultraviolet) and z > 5 (infrared) surveys, we see an approximately 10-fold increase in dN_CIV/dX over z ~ 6 --> 0, for W_r >= 0.6 AA. This suggests a monotonic and significant increase in the enrichment of gas outside galaxies over the 12 Gyr lifetime of the universe.
Using the HST STIS spectrograph we have obtained a grid of [O III] and H-beta emission-line spectra at 005x019 and 60 km/s (FWHM) resolution that covers much of the NLR of NGC 1068. We find emitting knots that have blueshifted radial velocities up to 3200 km/s relative to galaxy systemic, are 70-150 pc NE of the nucleus and up to 40 pc from the radio jet, emit several percent of the NLR line flux but no significant continuum, span velocity extents of up to 1250 km/s but a small fraction of the sky seen from the nucleus, coincide with a region of enhanced IR coronal-line emission, and have ionized masses $sim$200 Msun/ne4 (ne4=10^4 cm^{-3}). We argue that the blueshifted knots are ablata from disintegrating molecular clouds that are being photoionized by the AGN, and are being accelerated readiatively by the AGN or mechanically by the radio jet. In their kinematic properties, the knots resemble the associated absorbers seen projected on the UV continua of some AGN. Between 25-45 from the nucleus, emission is redshifted relative to systemic, a pattern that we interpret as gas in the galaxy disk being pushed away from us by the NE radio lobe.
We present a new determination of the large-scale clustering of the CIV forest (i.e., the absorption due to all CIV absorbers) using its cross-correlation with quasars in the Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12). We fit a linear bias model to the measured cross-correlation. We find that the transmission bias of the CIV forest, $b_{Fc}$, at a mean redshift of $z=2.3$, obeys the relation $(1+beta_c)b_{F c} = -0.024 pm 0.003$. Here, $beta_{c}$ is the linear redshift space distortion parameter of the CIV absorption, which can only be poorly determined at $beta_c=1.1pm 0.6$ from our data. This transmission bias is related to the bias of CIV absorbers and their host halos through the effective mean optical depth of the CIV forest, $bartau_c$. Estimating a value $bar tau_c(z) simeq 0.01$ from previous studies of the CIV equivalent width distribution, our measurement implies a CIV absorber bias near unity, with a large error due to uncertainties in both $beta_c$ and $bartau_c$. This makes it compatible with the higher DLA bias $b_{rm DLA}simeq 2$ measured previously from the cross-correlation of DLAs and the Lyman-$alpha$ forest. We discuss the implications of the CIV absorber bias for the mass distribution of their host halos. More accurate determinations of $bar tau_c(z)$ and $beta_c$ are necessary to obtain a more robust measurement of this CIV absorber bias.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا