Do you want to publish a course? Click here

Quasar -- CIV forest cross-correlation with SDSS DR12

83   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new determination of the large-scale clustering of the CIV forest (i.e., the absorption due to all CIV absorbers) using its cross-correlation with quasars in the Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12). We fit a linear bias model to the measured cross-correlation. We find that the transmission bias of the CIV forest, $b_{Fc}$, at a mean redshift of $z=2.3$, obeys the relation $(1+beta_c)b_{F c} = -0.024 pm 0.003$. Here, $beta_{c}$ is the linear redshift space distortion parameter of the CIV absorption, which can only be poorly determined at $beta_c=1.1pm 0.6$ from our data. This transmission bias is related to the bias of CIV absorbers and their host halos through the effective mean optical depth of the CIV forest, $bartau_c$. Estimating a value $bar tau_c(z) simeq 0.01$ from previous studies of the CIV equivalent width distribution, our measurement implies a CIV absorber bias near unity, with a large error due to uncertainties in both $beta_c$ and $bartau_c$. This makes it compatible with the higher DLA bias $b_{rm DLA}simeq 2$ measured previously from the cross-correlation of DLAs and the Lyman-$alpha$ forest. We discuss the implications of the CIV absorber bias for the mass distribution of their host halos. More accurate determinations of $bar tau_c(z)$ and $beta_c$ are necessary to obtain a more robust measurement of this CIV absorber bias.



rate research

Read More

The clustering properties of the Universe at large-scales are currently being probed at various redshifts through several cosmological tracers and with diverse statistical estimators. Here we use the three-point angular correlation function (3PACF) to probe the baryon acoustic oscillation (BAO) features in the quasars catalogue from the twelfth data release of the Sloan Digital Sky Survey, with mean redshift z = 2.225, detecting the BAO imprint with a statistical significance of 2.9{sigma}, obtained using lognormal mocks. Following a quasi model-independent approach for the 3PACF, we find the BAO transversal signature for triangles with sides $theta_1 = 1.0^circ$ and $theta_2 = 1.5^circ$ and the angle between them of $alpha = 1.59 pm 0.17$ rad, a value that corresponds to the angular BAO scale ${theta}_{BAO} = 1.82^circ pm 0.21^circ$ , in excellent agreement with the value found in a recent work (${theta}_{BAO} = 1.77^circ pm 0.31^circ$ ) applying the 2PACF to similar data. Moreover, we performed two type of tests: one to confirm the robustness of the BAO signal in the 3PACF through random displacements in the dataset, and the other to verify the suitability of our random samples, a null test that in fact does not show any signature that could bias our results.
From the Sloan Digital Sky Survey (SDSS) Data Release 12, which covers the full Baryonic Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the fine-structure constant over cosmological time-scales. We analyse the largest quasar sample considered so far in the literature, which contains 13175 spectra (10363 from SDSS-III/BOSS DR12 + 2812 from SDSS-II DR7) with redshift $z<,$1. We apply the emission-line method on the [O III] doublet (4960, 5008 A) and obtain $Deltaalpha/alpha= left(0.9 pm 1.8right)times10^{-5}$ for the relative variation of the fine-structure constant. We also investigate the possible sources of systematics: misidentification of the lines, sky OH lines, H$,beta$ and broad line contamination, Gaussian and Voigt fitting profiles, optimal wavelength range for the Gaussian fits, chosen polynomial order for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty of the measurement is dominated by the sky subtraction. The results presented in this work, being systematics limited, have sufficient statistics to constrain robustly the variation of the fine-structure constant in redshift bins ($Delta zapprox$ 0.06) over the last 7.9 Gyr. In addition, we study the [Ne III] doublet (3870, 3969 A) present in 462 quasar spectra and discuss the systematic effects on using these emission lines to constrain the fine-structure constant variation. Better constraints on $Deltaalpha/alpha $ ($<$10$^{-6}$) using the emission-line method would be possible with high-resolution spectroscopy and large galaxy/qso surveys.
We measure the cosmic shear power spectrum on large angular scales by cross-correlating the shapes of ~9 million galaxies measured in the optical SDSS survey with the shapes of ~2.7x10^5 radio galaxies measured by the overlapping VLA-FIRST survey. Our measurements span the multipole range 10 < l < 130, corresponding to angular scales 2deg < {theta} < 20deg. On these scales, the shear maps from both surveys suffer from significant systematic effects that prohibit a measurement of the shear power spectrum from either survey alone. Conversely we demonstrate that a power spectrum measured by cross-correlating the two surveys is unbiased. We measure an E-mode power spectrum from the data that is inconsistent with zero signal at the 99% confidence (~2.7{sigma}) level. The odd-parity B-mode signal and the EB cross- correlation are both found to be consistent with zero (within 1{sigma}). These constraints are obtained after a careful error analysis that accounts for uncertainties due to cosmic variance, random galaxy shape noise and shape measurement errors, as well as additional errors associated with the observed large-scale systematic effects in the two surveys. Our constraints are consistent with the expected signal in the concordance cosmological model assuming recent estimates of the cosmological parameters from the Planck satellite, and literature values for the median redshifts of the SDSS and FIRST galaxy populations. The cross-power spectrum approach described in this paper represents a powerful technique for mitigating shear systematics and will be ideal for extracting robust results, with the exquisite control of systematics required, from future cosmic shear surveys with the SKA, LSST, Euclid and WFIRST-AFTA.
We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Ly$alpha$-forest flux-transmission at a mean redshift $z=2.40$. The measurement uses the complete SDSS-III data sample: 168,889 forests and 234,367 quasars from the SDSS Data Release DR12. In addition to the statistical improvement on our previous study using DR11, we have implemented numerous improvements at the analysis level allowing a more accurate measurement of this cross-correlation. We also developed the first simulations of the cross-correlation allowing us to test different aspects of our data analysis and to search for potential systematic errors in the determination of the BAO peak position. We measure the two ratios $D_{H}(z=2.40)/r_{d} = 9.01 pm 0.36$ and $D_{M}(z=2.40)/r_{d} = 35.7 pm 1.7$, where the errors include marginalization over the non-linear velocity of quasars and the metal - quasar cross-correlation contribution, among other effects. These results are within $1.8sigma$ of the prediction of the flat-$Lambda$CDM model describing the observed CMB anisotropies. We combine this study with the Ly$alpha$-forest auto-correlation function [2017A&A...603A..12B], yielding $D_{H}(z=2.40)/r_{d} = 8.94 pm 0.22$ and $D_{M}(z=2.40)/r_{d} = 36.6 pm 1.2$, within $2.3sigma$ of the same flat-$Lambda$CDM model.
We present a revised version of our automated technique using Gaussian processes (GPs) to detect Damped Lyman-$alpha$ absorbers (DLAs) along quasar (QSO) sightlines. The main improvement is to allow our Gaussian process pipeline to detect multiple DLAs along a single sightline. Our DLA detections are regularised by an improved model for the absorption from the Lyman-$alpha$ forest which improves performance at high redshift. We also introduce a model for unresolved sub-DLAs which reduces mis-classifications of absorbers without detectable damping wings. We compare our results to those of two different large-scale DLA catalogues and provide a catalogue of the processed results of our Gaussian process pipeline using 158 825 Lyman-$alpha$ spectra from SDSS data release 12. We present updated estimates for the statistical properties of DLAs, including the column density distribution function (CDDF), line density ($dN/dX$), and neutral hydrogen density ($Omega_{textrm{DLA}}$).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا