No Arabic abstract
We investigate the orientation dependence of molecular high-order harmonic generation (HHG) both numerically and analytically. We show that the molecular recollision electronic wave packets (REWPs) in the HHG are closely related to the ionization potential as well as the particular orbital from which it ionized. As a result, the spectral amplitude of the molecular REWP can be significantly different from its reference atom (i.e., with the same ionization potential as the molecule under study) in some energy regions due to the interference between the atomic cores of the molecules. This finding is important for molecular orbital tomography using HHG[Nature textbf{432}, 867(2004)].
This paper has been withdrawn by the authors because the wave packet propagation used in the ion-dynamics calculation did not allow for electron-nuclei correlation. Hence, the conclusion that the ion-dynamics model is not in agreement with experiment is not substantiated.
High-order harmonic generation (HHG) in aligned linear molecules can offer valuable information about strong-field interactions in lower-lying molecular orbitals, but extracting this information is difficult for three-dimensional molecular geometries. Our measurements of the asymmetric top SO2 show large axis dependencies, which change with harmonic order. The analysis shows that these spectral features must be due to field ionization and recombination from multiple orbitals during HHG. We expect that HHG can probe orbital dependencies using this approach for a broad class of asymmetric-top molecules.
We investigate how short and long electron trajectory contributions to high harmonic emission and their interferences give access to intra-molecular dynamics. In the case of unaligned molecules, we show experimental evidences that the long trajectory signature is more dependent upon the molecule than the short one, providing a high sensitivity to cation nuclear dynamics within 100s of as to few fs. Using theoretical approaches based on Strong Field Approximation and Time Dependent Schrodinger Equation, we examine how quantum path interferences encode electronic motion whilst molecules are aligned. We show that the interferences are dependent on channels superposition and upon which ionisation channel is involved. In particular, quantum path interferences encodes electronic migration signature while coupling between channels is allowed by the laser field. Hence, molecular quantum path interferences is a promising method for Attosecond Spectroscopy, allowing the resolution of ultra-fast charge migration in molecules after ionisation in a self-referenced manner.
An all-optical measurement of high-order fractional molecular echoes is demonstrated by using high-order harmonic generation (HHG). Excited by a pair of time-delayed short laser pulses, the signatures of full and high order fractional (1/2 and 1/3) alignment echoes are observed in the HHG signals measured from CO2 molecules at various time delays of the probe pulse. By increasing the time delay of the pump pulses, much higher order fractional (1/4) alignment echo is also observed in N2O molecules. With an analytic model based on the impulsive approximation, the spatiotemporal dynamics of the echo process are retrieved from the experiment. Compared to the typical molecular alignment revivals, high-order fractional molecular echoes are demonstrated to dephase more rapidly, which will open a new route towards the ultrashort-time measurement. The proposed HHG method paves an efficient way for accessing the high-order fractional echoes in molecules.
A three step model for high harmonic generation from impurities in solids is developed. The process is found to be similar to high harmonic generation in atomic and molecular gases with the main difference coming from the non-parabolic nature of the bands. This opens a new avenue for strong field atomic and molecular physics in the condensed matter phase. As a first application, our conceptual study demonstrates the feasibility of tomographic measurement of impurity orbitals.