Do you want to publish a course? Click here

Multiple orbital contributions to molecular high-harmonic generation in an asymmetric top

130   0   0.0 ( 0 )
 Added by Limor Spector
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-order harmonic generation (HHG) in aligned linear molecules can offer valuable information about strong-field interactions in lower-lying molecular orbitals, but extracting this information is difficult for three-dimensional molecular geometries. Our measurements of the asymmetric top SO2 show large axis dependencies, which change with harmonic order. The analysis shows that these spectral features must be due to field ionization and recombination from multiple orbitals during HHG. We expect that HHG can probe orbital dependencies using this approach for a broad class of asymmetric-top molecules.



rate research

Read More

This paper has been withdrawn by the authors because the wave packet propagation used in the ion-dynamics calculation did not allow for electron-nuclei correlation. Hence, the conclusion that the ion-dynamics model is not in agreement with experiment is not substantiated.
We investigate the orientation dependence of molecular high-order harmonic generation (HHG) both numerically and analytically. We show that the molecular recollision electronic wave packets (REWPs) in the HHG are closely related to the ionization potential as well as the particular orbital from which it ionized. As a result, the spectral amplitude of the molecular REWP can be significantly different from its reference atom (i.e., with the same ionization potential as the molecule under study) in some energy regions due to the interference between the atomic cores of the molecules. This finding is important for molecular orbital tomography using HHG[Nature textbf{432}, 867(2004)].
We present an experimental technique using orbital angular momentum (OAM) in a fundamental laser field to drive High Harmonic Generation (HHG). The mixing of beams with different OAM allows to generate two laser foci tightly spaced to study the phase and amplitude of HHG produced in diatomic nitrogen. Nitrogen is used as a well studied system to show the quality of OAM based HHG interferometry.
Using dynamical Hartree-Fock mean-field theory, we study the high-harmonic generation (HHG) in the fullerene molecules C$_{60}$ and C$_{70}$ under strong pump wave driving. We consider a strong-field regime and show that the output harmonic radiation exhibits multiple plateaus, whose borders are defined by the molecular excitonic lines and cutoff energies within each plateau scale linearly with the field strength amplitude. In contrast to atomic cases for the fullerene molecule, with the increase of the pump wave photon energy the cutoff harmonic energy is increased. We also show that with the increase of the electron-electron interaction energy overall the HHG rate is suppressed. We demonstrate that the C$_{70}$ molecule shows richer HHG spectra and a stronger high-harmonic intensity than the C$_{60}$.
We investigate how short and long electron trajectory contributions to high harmonic emission and their interferences give access to intra-molecular dynamics. In the case of unaligned molecules, we show experimental evidences that the long trajectory signature is more dependent upon the molecule than the short one, providing a high sensitivity to cation nuclear dynamics within 100s of as to few fs. Using theoretical approaches based on Strong Field Approximation and Time Dependent Schrodinger Equation, we examine how quantum path interferences encode electronic motion whilst molecules are aligned. We show that the interferences are dependent on channels superposition and upon which ionisation channel is involved. In particular, quantum path interferences encodes electronic migration signature while coupling between channels is allowed by the laser field. Hence, molecular quantum path interferences is a promising method for Attosecond Spectroscopy, allowing the resolution of ultra-fast charge migration in molecules after ionisation in a self-referenced manner.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا