No Arabic abstract
We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modeled as a two state model; the particle moves with a constant propulsion strength but its orientation switches from one state to other as in a random telegraphic process. We study the influence of a finite resetting rate $r$ on the mean first passage time to a fixed target of a single free Active Brownian Particle and map this result using an effective diffusion process. As in the case of a passive Brownian particle, we can find an optimal resetting rate $r^*$ for an active Brownian particle for which the target is found with the minimum average time. In the case of the presence of an external potential, we find good agreement between the theory and numerical simulations using an effective potential approach.
Particles kicked by external forces to produce mobility distinct from thermal diffusion are an iconic feature of the active matter problem. Here, we map this onto a minimal model for experiment and theory covering the wide time and length scales of usual active matter systems. A particle diffusing in a harmonic potential generated by an optical trap is kicked by programmed forces with time correlation at random intervals following the Poisson process. The models generic simplicity allows us to find conditions for which displacements are Gaussian (or not), how diffusion is perturbed (or not) by kicks, and quantifying heat dissipation to maintain the non-equilibrium steady state in an active bath. The model reproduces experimental results of tracer mobility in an active bath of swimming algal cells. It can be used as a stochastic dynamic simulator for Brownian objects in various active baths without mechanistic understanding, owing to the generic framework of the protocol.
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index $alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is especially prominent among cells persistently crawling within a spatially varying distribution of cell-sized obstacles. In this article we introduce a toy model of topotaxis based on active Brownian particles constrained to move in a lattice of obstacles, with space-dependent lattice spacing. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.
Frictional forces affect the rheology of hard-sphere colloids, at high shear rate. Here we demonstrate, via numerical simulations, that they also affect the dynamics of active Brownian particles, and their motility induced phase separation. Frictional forces increase the angular diffusivity of the particles, in the dilute phase, and prevent colliding particles from resolving their collision by sliding one past to the other. This leads to qualitatively changes of motility-induced phase diagram in the volume-fraction motility plane. While frictionless systems become unstable towards phase separation as the motility increases only if their volume fraction overcomes a threshold, frictional system become unstable regardless of their volume fraction. These results suggest the possibility of controlling the motility induced phase diagram by tuning the roughness of the particles.