Do you want to publish a course? Click here

Jensens Inequality for g-Convex Function under g-Expectation

238   0   0.0 ( 0 )
 Added by Guangyan Jia
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

A real valued function defined on}$mathbb{R}$ {small is called}$g${small --convex if it satisfies the following textquotedblleft generalized Jensens inequalitytextquotedblright under a given}$g${small -expectation, i.e., }$h(mathbb{E}^{g}[X])leq mathbb{E}% ^{g}[h(X)]${small, for all random variables}$X$ {small such that both sides of the inequality are meaningful. In this paper we will give a necessary and sufficient conditions for a }$C^{2}${small -function being}$% g ${small -convex. We also studied some more general situations. We also studied}$g${small -concave and}$g${small -affine functions.



rate research

Read More

64 - Hanwu Li 2018
We develop a theory of optimal stopping problems under G-expectation framework. We first define a new kind of random times, called G-stopping times, which is suitable for this problem. For the discrete time case with finite horizon, the value function is defined backwardly and we show that it is the smallest G-supermartingale dominating the payoff process and the optimal stopping time exists. Then we extend this result both to the infinite horizon and to the continuous time case. We also establish the relation between the value function and solution of reflected BSDE driven by G-Brownian motion.
The objective of this paper is to establish the decomposition theorem for supermartingales under the $G$-framework. We first introduce a $g$-nonlinear expectation via a kind of $G$-BSDE and the associated supermartingales. We have shown that this kind of supermartingales have the decomposition similar to the classical case. The main ideas are to apply the uniformly continuous property of $S_G^beta(0,T)$, the representation of the solution to $G$-BSDE and the approximation method via penalization.
132 - Fenfen Yang 2018
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, where the $sup$-kernel is introduced in this paper for the first time.
78 - J. G. Liao , Arthur Berg 2017
This paper proposes a new sharpened version of the Jensens inequality. The proposed new bound is simple and insightful, is broadly applicable by imposing minimum assumptions, and provides fairly accurate result in spite of its simple form. Applications to the moment generating function, power mean inequalities, and Rao-Blackwell estimation are presented. This presentation can be incorporated in any calculus-based statistical course.
153 - Huilin Zhang 2015
This paper is concerned with the connection between G-Brownian Motion and analytic functions. We introduce the complex version of sublinear expectation, and then do the stochastic analysis in this framework. Furthermore, the conformal G-Brownian Motion is introduced together with a representation, and the corresponding conformal invariance is shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا