Do you want to publish a course? Click here

A Complex Version of G-Expectation and its Application to Conformal Martingale

154   0   0.0 ( 0 )
 Added by Huilin Zhang
 Publication date 2015
  fields
and research's language is English
 Authors Huilin Zhang




Ask ChatGPT about the research

This paper is concerned with the connection between G-Brownian Motion and analytic functions. We introduce the complex version of sublinear expectation, and then do the stochastic analysis in this framework. Furthermore, the conformal G-Brownian Motion is introduced together with a representation, and the corresponding conformal invariance is shown.



rate research

Read More

64 - Hanwu Li 2018
We develop a theory of optimal stopping problems under G-expectation framework. We first define a new kind of random times, called G-stopping times, which is suitable for this problem. For the discrete time case with finite horizon, the value function is defined backwardly and we show that it is the smallest G-supermartingale dominating the payoff process and the optimal stopping time exists. Then we extend this result both to the infinite horizon and to the continuous time case. We also establish the relation between the value function and solution of reflected BSDE driven by G-Brownian motion.
238 - Guangyan Jia , Shige Peng 2008
A real valued function defined on}$mathbb{R}$ {small is called}$g${small --convex if it satisfies the following textquotedblleft generalized Jensens inequalitytextquotedblright under a given}$g${small -expectation, i.e., }$h(mathbb{E}^{g}[X])leq mathbb{E}% ^{g}[h(X)]${small, for all random variables}$X$ {small such that both sides of the inequality are meaningful. In this paper we will give a necessary and sufficient conditions for a }$C^{2}${small -function being}$% g ${small -convex. We also studied some more general situations. We also studied}$g${small -concave and}$g${small -affine functions.
The objective of this paper is to establish the decomposition theorem for supermartingales under the $G$-framework. We first introduce a $g$-nonlinear expectation via a kind of $G$-BSDE and the associated supermartingales. We have shown that this kind of supermartingales have the decomposition similar to the classical case. The main ideas are to apply the uniformly continuous property of $S_G^beta(0,T)$, the representation of the solution to $G$-BSDE and the approximation method via penalization.
390 - Anthony Reveillac 2011
In this paper we prove that every random variable of the form $F(M_T)$ with $F:real^d toreal$ a Borelian map and $M$ a $d$-dimensional continuous Markov martingale with respect to a Markov filtration $mathcal{F}$ admits an exact integral representation with respect to $M$, that is, without any orthogonal component. This representation holds true regardless any regularity assumption on $F$. We extend this result to Markovian quadratic growth BSDEs driven by $M$ and show they can be solved without an orthogonal component. To this end, we extend first existence results for such BSDEs under a general filtration and then obtain regularity properties such as differentiability for the solution process.
We implement a version of conformal field theory in a doubly connected domain to connect it to the theory of annulus SLE of various types, including the standard annulus SLE, the reversible annulus SLE, and the annulus SLE with several force points. This implementation considers the statistical fields generated under the OPE multiplication by the Gaussian free field and its central/background charge modifications with a weighted combination of Dirichlet and excursion-reflected boundary conditions. We derive the Eguchi-Ooguri version of Wards equations and Belavin-Polyakov-Zamolodchikov equations for those statistical fields and use them to show that the correlations of fields in the OPE family under the insertion of the one-leg operators are martingale-observables for variants of annulus SLEs. We find Coulomb gas (Dotsenko-Fateev integral) solutions to the parabolic partial differential equations for partition functions of conformal field theory for the reversible annulus SLE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا