Do you want to publish a course? Click here

Ground-state reference systems for expanding correlated fermions in one dimension

307   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the sudden expansion of strongly correlated fermions in a one-dimensional lattice, utilizing the time-dependent density-matrix renormalization group method. Our focus is on the behavior of experimental observables such as the density, the momentum distribution function, and the density and spin structure factors. As our main result, we show that correlations in the transient regime can be accurately described by equilibrium reference systems. In addition, we find that the expansion from a Mott insulator produces distinctive peaks in the momentum distribution function at |k| ~ pi/2, accompanied by the onset of power-law correlations.



rate research

Read More

135 - I. Hagymasi , O. Legeza 2016
We investigate the ground-state of a p-wave Kondo-Heisenberg model introduced by Alexandrov and Coleman with an Ising-type anisotropy in the Kondo interaction and correlated conduction electrons. Our aim is to understand how they affect the stability of the Haldane state obtained in the SU(2) symmetric case without the Hubbard interaction. By applying the density-matrix renormalization group algorithm and calculating the entanglement entropy we show that in the anisotropic case a phase transition occurs and a Neel state emerges above a critical value of the Coulomb interaction. These findings are also corroborated by the examination of the entanglement spectrum and the spin profile of the system which clarify the structure of each phase.
We present a purely diagrammatic derivation of the dual fermion scheme [Phys. Rev. B 77 (2008) 033101]. The derivation makes particularly clear that a similar scheme can be developed for an arbitrary reference system provided it has the same interaction term as the original system. Thereby no restrictions are imposed by the locality of the reference problem or by the nature of the original problem as a lattice one. We present new arguments in favour of keeping the dual denominator in the expression for the lattice self-energy independently of the truncation of the dual interaction. As an example we present the computational results for the half-filled 2D Hubbard model with the choice of a $2times2$ plaquette with periodic boundary conditions as a reference system. We observe that obtained results are in a good agreement with numerically exact lattice quantum Monte Carlo data.
Weyl semimetals (WSMs) are characterized by topologically stable pairs of nodal points in the band structure, that typically originate from splitting a degenerate Dirac point by breaking symmetries such as time reversal or inversion symmetry. Within the independent electron approximation, the transition between an insulating state and a WSM requires the local creation or annihilation of one or several pairs of Weyl nodes in reciprocal space. Here, we show that strong electron-electron interactions may qualitatively change this scenario. In particular, we reveal that the transition to a Weyl semi-metallic phase can become discontinuous, and, quite remarkably, pairs of Weyl nodes with a finite distance in momentum space suddenly appear or disappear in the spectral function. We associate this behavior to the buildup of strong many-body correlations in the topologically non-trivial regions, manifesting in dynamical fluctuations in the orbital channel. We also highlight the impact of electronic correlations on the Fermi arcs.
We study the finite-energy density phase diagram of spinless fermions with attractive interactions in one dimension in the presence of uncorrelated diagonal disorder. Unlike the case of repulsive interactions, a delocalized Luttinger-liquid phase persists at weak disorder in the ground state, which is a well-known result. We revisit the ground-state phase diagram and show that the recently introduced occupation-spectrum discontinuity computed from the eigenspectrum of one-particle density matrices is noticeably smaller in the Luttinger liquid compared to the localized regions. Moreover, we use the functional renormalization scheme to study the finite-size dependence of the conductance, which resolves the existence of the Luttinger liquid as well and is computationally cheap. Our main results concern the finite-energy density case. Using exact diagonalization and by computing various established measures of the many-body localization-delocalization transition, we argue that the zero-temperature Luttinger liquid smoothly evolves into a finite-energy density ergodic phase without any intermediate phase transition.
We propose to utilize the sub-system fidelity (SSF), defined by comparing a pair of reduced density matrices derived from the degenerate ground states, to identify and/or characterize symmetry protected topological (SPT) states in one-dimensional interacting many-body systems. The SSF tells whether two states are locally indistinguishable (LI) by measurements within a given sub-system. Starting from two polar states (states that could be distinguished on either edge), the other combinations of these states can be mapped onto a Bloch sphere. We prove that a pair of orthogonal states on the equator of the Bloch sphere are LI, independently of whether they are SPT states or cat states (symmetry-preserving states by linear combinations of states that break discrete symmetries). Armed with this theorem, we provide a scheme to construct zero-energy exitations that swap the LI states. We show that the zero mode can be located anywhere for cat states, but is localized near the edge for SPT states. We also show that the SPT states are LI in a finite fraction of the bulk (excluding the two edges), whereas the symmetry-breaking states are distinguishable. This can be used to pinpoint the transition from SPT states to the symmetry-breaking states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا