Do you want to publish a course? Click here

Agegraphic dark energy as a quintessence

119   0   0.0 ( 0 )
 Added by Jingfei Zhang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, a dark energy model characterized by the age of the universe, dubbed ``agegraphic dark energy, was proposed by Cai. In this paper, a connection between the quintessence scalar-field and the agegraphic dark energy is established, and accordingly, the potential of the agegraphic quintessence field is constructed.



rate research

Read More

134 - K. Karami , A. Sorouri 2010
Here we consider the entropy-corrected version of the new agegraphic dark energy model in the non-flat FRW universe. We derive the exact differential equation that determines the evolution of the entropy-corrected new agegraphic dark energy density parameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.
We study the dynamical properties of tracker quintessence models using a general parametrization of their corresponding potentials, and show that there is a general condition for the appearance of a tracker behavior at early times. Likewise, we determine the conditions under which the quintessence tracker models can also provide an accelerating expansion of the universe with an equation of state closer to $-1$. Apart from the analysis of the background dynamics, we also include linear density perturbations of the quintessence field in a consistent manner and using the same parametrization of the potential, with which we show the influence they have on some cosmological observables. The generalized tracker models are compared to observations, and we discuss their appropriateness to ameliorate the fine-tuning of initial conditions and their consistency with the accelerated expansion of the Universe at late times.
We investigate cosmological models in which dynamical dark energy consists of a scalar field whose present-day value is controlled by a coupling to the neutrino sector. The behaviour of the scalar field depends on three functions: a kinetic function, the scalar field potential, and the scalar field-neutrino coupling function. We present an analytic treatment of the background evolution during radiation- and matter-domination for exponential and inverse power law potentials, and find a relaxation of constraints compared to previous work on the amount of early dark energy in the exponential case. We then carry out a numerical analysis of the background cosmology for both types of potential and various illustrative choices of the kinetic and coupling functions. By applying bounds from Planck on the amount of early dark energy, we are able to constrain the magnitude of the kinetic function at early times.
Oscillating scalar fields, with an oscillation frequency much greater than the expansion rate, have been proposed as models for dark energy. We examine these models, with particular emphasis on the evolution of the ratio of the oscillation frequency to the expansion rate. We show that this ratio always increases with time if the dark energy density declines less rapidly than the background energy density. This allows us to classify oscillating dark energy models in terms of the epoch at which the oscillation frequency exceeds the expansion rate, which is effectively the time at which rapid oscillations begin. There are three basic types of behavior: early oscillation models, in which oscillations begin during the matter-dominated era, late oscillation models, in which oscillations begin after scalar-field domination, and non-oscillating models. We examine a representative set of models (those with power-law potentials) and determine the parameter range giving acceptable agreement with the supernova observations. We show that a subset of all three classes of models can be consistent with the observational data.
We use linear perturbation theory to study perturbations in dynamical dark energy models. We compare quintessence and tachyonic dark energy models with identical background evolution. We write the corresponding equations for different models in a form that makes it easier to see that the two models are very hard to distinguish in the linear regime, especially for models with $(1 + w) ll 1$. We use Cosmic Microwave Background data and parametric representations for the two models to illustrate that they cannot be distinguished for the same background evolution with existing observations. Further, we constrain tachyonic models with the Planck data. We do this analysis for exponential and inverse square potentials and find that the intrinsic parameters of the potentials remain very weakly constrained. In particular, this is true in the regime allowed by low redshift observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا