No Arabic abstract
We study the dynamical properties of tracker quintessence models using a general parametrization of their corresponding potentials, and show that there is a general condition for the appearance of a tracker behavior at early times. Likewise, we determine the conditions under which the quintessence tracker models can also provide an accelerating expansion of the universe with an equation of state closer to $-1$. Apart from the analysis of the background dynamics, we also include linear density perturbations of the quintessence field in a consistent manner and using the same parametrization of the potential, with which we show the influence they have on some cosmological observables. The generalized tracker models are compared to observations, and we discuss their appropriateness to ameliorate the fine-tuning of initial conditions and their consistency with the accelerated expansion of the Universe at late times.
We investigate cosmological models in which dynamical dark energy consists of a scalar field whose present-day value is controlled by a coupling to the neutrino sector. The behaviour of the scalar field depends on three functions: a kinetic function, the scalar field potential, and the scalar field-neutrino coupling function. We present an analytic treatment of the background evolution during radiation- and matter-domination for exponential and inverse power law potentials, and find a relaxation of constraints compared to previous work on the amount of early dark energy in the exponential case. We then carry out a numerical analysis of the background cosmology for both types of potential and various illustrative choices of the kinetic and coupling functions. By applying bounds from Planck on the amount of early dark energy, we are able to constrain the magnitude of the kinetic function at early times.
We use linear perturbation theory to study perturbations in dynamical dark energy models. We compare quintessence and tachyonic dark energy models with identical background evolution. We write the corresponding equations for different models in a form that makes it easier to see that the two models are very hard to distinguish in the linear regime, especially for models with $(1 + w) ll 1$. We use Cosmic Microwave Background data and parametric representations for the two models to illustrate that they cannot be distinguished for the same background evolution with existing observations. Further, we constrain tachyonic models with the Planck data. We do this analysis for exponential and inverse square potentials and find that the intrinsic parameters of the potentials remain very weakly constrained. In particular, this is true in the regime allowed by low redshift observations.
We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Godels metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters $Omega_M = 0.29$ and $Omega_k= 0.01$ respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.
The self-gravitating gas in the Newtonian limit is studied in the presence of dark energy with a linear and constant equation of state. Entropy extremization associates to the isothermal Boltzmann distribution an effective density that includes `dark energy particles, which either strengthen or weaken mutual gravitational attraction, in case of quintessence or phantom dark energy, respectively, that satisfy a linear equation of state. Stability is studied for microcanonical (fixed energy) and canonical (fixed temperature) ensembles. Compared to the previously studied cosmological constant case, in the present work it is found that quintessence increases, while phantom dark energy decreases the instability domain under gravitational collapse. Thus, structures are more easily formed in a quintessence rather than in a phantom dominated Universe. Assuming that galaxy clusters are spherical, nearly isothermal and in hydrostatic equilibrium we find that dark energy with a linear and constant equation of state, for fixed radius, mass and temperature, steepens their total density profile. In case of a cosmological constant, this effect accounts for a 1.5% increase in the density contrast, that is the center to edge density ratio of the cluster. We also propose a method to constrain phantom dark energy.
The recent GW170817 measurement favors the simplest dark energy models, such as a single scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending on whether the equation of state decreases towards $-1$ or departs from it. In this paper we put observational constraints on the parameters governing the equations of state of tracking freezing, scaling freezing and thawing models using updated data, from the Planck 2015 release, joint light-curve analysis and baryonic acoustic oscillations. Because of the current tensions on the value of the Hubble parameter $H_0$, unlike previous authors, we let this parameter vary, which modifies significantly the results. Finally, we also derive constraints on neutrino masses in each of these scenarios.