Do you want to publish a course? Click here

Observing the Inverse melting of the vortex lattice in Bi$_2$Sr$_2$CaCu$_2$O$_8$ with point defects using Langevin simulations with vortex shaking

233   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Langevin dynamics simulations of the vortex matter in the highly-anisotropic high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_8$ were performed. We introduced point defects as a smoothened distribution of a random potential. Both the electromagnetic and Josephson interactions among pancake vortices were included. A special shaking and annealing process was introduced to let the system approach the equilibrium configuration. We are able to see the inverse melting transition from the Bragg-glass to the amorphous vortex glass state, in agreement with recent experiments.



rate research

Read More

The thermodynamic $H-T$ phase diagram of Bi$_2$Sr$_2$CaCu$_2$O$_8$ was mapped by measuring local emph{equilibrium} magnetization $M(H,T)$ in presence of vortex `shaking. Two equally sharp first-order magnetization steps are revealed in a single temperature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium $M(T)$ slope. The first- and second-order lines intersect at intermediate temperatures, suggesting the existence of four phases: Bragg glass and vortex crystal at low fields, glass and liquid at higher fields.
A magnetic field applied to type-II superconductors introduces quantized vortices that locally quench superconductivity, providing a unique opportunity to investigate electronic orders that may compete with superconductivity. This is especially true in cuprate superconductors in which mutual relationships among superconductivity, pseudogap, and broken-spatial-symmetry states have attracted much attention. Here we observe energy and momentum dependent bipartite electronic superstructures in the vortex core of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using spectroscopic-imaging scanning tunneling microscopy (SI-STM). In the low-energy range where the nodal Bogoliubov quasiparticles are well-defined, we show that the quasiparticle scattering off vortices generates the electronic superstructure known as vortex checkerboard. In the high-energy region where the pseudogap develops, vortices amplify the broken-spatial-symmetry patterns that preexist in zero field. These data reveal canonical d-wave superconductivity near the node, yet competition between superconductivity and broken-spatial-symmetry states near the antinode.
Competition with magnetism is at the heart of high temperature superconductivity, most intensely felt near a vortex core. To investigate vortex magnetism we have developed a spatially resolved probe using nuclear magnetic resonance. Our spin-lattice-relaxation spectroscopy is spatially resolved both within a conduction plane as well as from one plane to another. With this approach we have found a spin-density wave associated with the vortex core in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, which is expected from scanning tunneling microscope observations of checkerboard patterns in the local density of electronic states.[1] We determine both the spin-modulation amplitude and decay length from the vortex core in fields up to H=30 T.
159 - S. Ooi , T. Shibauchi , K. Itaka 2000
Vortex phase diagram under tilted fields from the $c$ axis in Bi${}_2$Sr${}_2$CaCu${}_2$O${}_{8+y}$ is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the $c$ axis, an anomaly ($H_p^ast$) other than the well-known peak effect ($H_p$) are found at fields below $H_p$. The angular dependence of the field $H_p^ast$ is nonmonotonic and clearly different from that of $H_p$ and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.
Low temperature thermal conductivity, $kappa$, of optimally-doped Bi2212 was studied before and after the introduction of point defects by electron irradiation. The amplitude of the linear component of $kappa$ remains unchanged, confirming the universal nature of heat transport by zero-energy quasiparticles. The induced decrease in the absolute value of $kappa$ at finite temperatures allows us to resolve a nonuniversal term in $kappa$ due to conduction by finite-energy quasiparticles. The magnitude of this term provides an estimate of the quasiparticle lifetime at subkelvin temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا