No Arabic abstract
We investigate the present-day photometric properties of the dwarf spheroidal galaxies in the Local Group. From the analysis of their integrated colours, we consider a possible link between dwarf spheroidals and giant ellipticals. From the analysis of the V vs (B-V) plot, we search for a possible evolutionary link between dwarf spheroidal galaxies (dSphs) and dwarf irregular galaxies (dIrrs). By means of chemical evolution models combined with a spectro-photometric model, we study the evolution of six Local Group dwarf spheroidal galaxies (Carina, Draco, Sagittarius, Sculptor, Sextans and Ursa Minor). The chemical evolution models, which adopt up-to-date nucleosynthesis from low and intermediate mass stars as well as nucleosynthesis and energetic feedback from supernovae type Ia and II, reproduce several observational constraints of these galaxies, such as abundance ratios versus metallicity and the metallicity distributions. The proposed scenario for the evolution of these galaxies is characterised by low star formation rates and high galactic wind efficiencies. Such a scenario allows us to predict integrated colours and magnitudes which agree with observations. Our results strongly suggest that the first few Gyrs of evolution, when the star formation is most active, are crucial to define the luminosities, colours, and other photometric properties as observed today. After the star formation epoch, the galactic wind sweeps away a large fraction of the gas of each galaxy, which then evolves passively. Our results indicate that it is likely that at a certain stage of their evolution, dSphs and dIrrs presented similar photometric properties. However, after that phase, they evolved along different paths, leading them to their currently disparate properties.
We present 3D hydrodynamic simulations aimed at studying the dynamical and chemical evolution of the interstellar medium in dwarf spheroidal galaxies. This evolution is driven by the explosions of Type II and Type Ia supernovae, whose different contribution is explicitly taken into account in our models. We compare our results with avaiable properties of the Draco galaxy. Despite the huge amount of energy released by SNe explosions, in our model the galaxy is able to retain most of the gas allowing a long period ($> 3$ Gyr) of star formation, consistent with the star formation history derived by observations. The stellar [Fe/H] distribution found in our model matches very well the observed one. The chemical properties of the stars derive from the different temporal evolution between Type Ia and Type II supernova rate, and from the different mixing of the metals produced by the two types of supernovae. We reproduce successfully the observed [O/Fe]-[Fe/H] diagram.
XMM-Newton and Chandra have ushered in a new era for the study of dwarf galaxies in the Local Group. We provide an overview of the opportunities, challenges, and some early results. The large number of background sources relative to galaxy sources is a major theme. Despite this challenge, the identification of counterparts has been possible, providing hints that the same mechanisms producing X-ray sources in larger galaxies are active in dwarf galaxies. A supersoft X-ray source within 2 of the supermassive black hole in M32 may be a remnant of the tidal disruption of a giant, although other explanations cannot be ruled out.
We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.
We study the Local Group (LG) dwarf galaxy population predicted by the apostle $Lambda$CDM cosmological hydrodynamics simulations. These indicate that: (i)~the total mass within $3$ Mpc of the Milky Way-Andromeda midpoint ($M_{rm 3Mpc}$) typically exceeds $sim 3$ times the sum of the virial masses ($M_{rm 200crit}$) of the two primaries and (ii)~the dwarf galaxy formation efficiency per unit mass is uniform throughout the volume. This suggests that the satellite population within the virial radii of the Milky Way and Andromeda should make up fewer than one third of all LG dwarfs within $3$ Mpc. This is consistent with the fraction of observed LG galaxies with stellar mass $M_*>10^7,M_{odot}$ that are satellites ($12$ out of $42$; i.e., $28$ per cent). For the apostle galaxy mass-halo mass relation, the total number of such galaxies further suggests a LG mass of $M_{rm 3 Mpc}sim 10^{13} , M_{odot}$. At lower galaxy masses, however, the observed satellite fraction is substantially higher ($42$ per cent for $M_*>10^5,M_{odot}$). If this is due to incompleteness in the field sample, then $sim 50$ dwarf galaxies at least as massive as the Draco dwarf spheroidal must be missing from the current LG {it field} dwarf inventory. The incompleteness interpretation is supported by the pronounced flattening of the LG luminosity function below $M_*sim 10^7, M_{odot}$, and by the scarcity of low-surface brightness LG field galaxies compared to satellites. The simulations indicate that most missing dwarfs should lie near the virial boundaries of the two LG primaries, and predict a trove of nearby dwarfs that await discovery by upcoming wide-field imaging surveys.
We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter in the modeling, making use, instead, of its colour-magnitude diagram (CMD)-constrained SFH. By varying the relative roles of galactic winds, re-accretion, and ram-pressure stripping within the modeling, we converge on a favoured scenario which emphasises the respective roles of winds and re-accretion. While our model is successful in recovering most elemental abundance patterns, comparable success is not found for all the neutron capture elements. Neglecting the effects of stripping results in predicted gas fractions approximately two orders of magnitude too high, relative to that observed.