No Arabic abstract
For a difference approximations of multidimensional diffusion, the truncated local limit theorem is proved. Under very mild conditions on the distribution of the difference terms, this theorem provides that the transition probabilities of these approximations, after truncation of some asymptotically negligible terms, possess a densities that converge uniformly to the transition probability density for the limiting diffusion and satisfy a uniform diffusion-type estimates. The proof is based on the new version of the Malliavin calculus for the product of finite family of measures, that may contain non-trivial singular components. An applications for uniform estimates for mixing and convergence rates for difference approximations to SDEs and for convergence of difference approximations for local times of multidimensional diffusions are given.
We consider sequences of additive functionals of difference approximations for uniformly non-degenerate multidimensional diffusions. The conditions are given, sufficient for such a sequence to converge weakly to a W-functional of the limiting process. The class of the W-functionals, that can be obtained as the limiting ones, is completely described in the terms of the associated W-measures, and coincides with the class of the functionals that are regular w.r.t. the phase variable.
A limit theorem for a sequence of diffusion processes on graphs is proved in a case when vary both parameters of the processes (the drift and diffusion coefficients on every edge and the asymmetry coefficients in every vertex), and configuration of graphs, where the processes are set on. The explicit formulae for the parameters of asymmetry for the vertices of the limiting graph are given in the case, when, in the pre-limiting graphs, some groups of vertices form knots contracting into a points.
The Robbins-Monro algorithm is a recursive, simulation-based stochastic procedure to approximate the zeros of a function that can be written as an expectation. It is known that under some technical assumptions, a Gaussian convergence can be established for the procedure. Here, we are interested in the local limit theorem, that is, quantifying this convergence on the density of the involved objects. The analysis relies on a parametrix technique for Markov chains converging to diffusions, where the drift is unbounded.
We consider a particle undergoing Brownian motion in Euclidean space of any dimension, forced by a Gaussian random velocity field that is white in time and smooth in space. We show that conditional on the velocity field, the quenched density of the particle after a long time can be approximated pointwise by the product of a deterministic Gaussian density and a spacetime-stationary random field $U$. If the velocity field is additionally assumed to be incompressible, then $Uequiv 1$ almost surely and we obtain a local central limit theorem.
We combine Steins method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Our results generalize and refine the main findings by Peccati and Tudor (2005), Nualart and Ortiz-Latorre (2007), Peccati (2007) and Nourdin and Peccati (2007b, 2008); in particular, they apply to approximations by means of Gaussian vectors with an arbitrary, positive definite covariance matrix. Among several examples, we provide an application to a functional version of the Breuer-Major CLT for fields subordinated to a fractional Brownian motion.