Do you want to publish a course? Click here

Interaction of streamers in air and other oxygen-nitrogen mixtures

80   0   0.0 ( 0 )
 Added by Alejandro Luque
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction of streamers in nitrogen-oxygen mixtures such as air is studied. First, an efficient method for fully three-dimensional streamer simulations in multiprocessor machines is introduced. With its help, we find two competing mechanisms how two adjacent streamers can interact: through electrostatic repulsion and through attraction due to nonlocal photo-ionization. The non-intuitive effects of pressure and of the nitrogen-oxygen ratio are discussed. As photo-ionization is experimentally difficult to access, we finally suggest to measure it indirectly through streamer interactions.

rate research

Read More

Pictures show that streamer or sprite discharge channels emerging from the same electrode sometimes seem to reconnect or merge though their heads carry electric charge of the same polarity; one might therefore suspect that reconnections are an artifact of the two-dimensional projection in the pictures. Here we use stereo-photography to investigate the full three-dimensional structure of such events. We analyze reconnection, possibly an electrostatic effect in which a late thin streamer reconnects to an earlier thick streamer channel, and merging, a suggested photoionization effect in which two simultaneously propagating streamer heads merge into one new streamer. We use four different anode geometries (one tip, two tips, two asymmetric protrusions in a plate, and a wire), placed 40 mm above a flat cathode plate in ambient air. A positive high voltage pulse is applied to the anode, creating a positive corona discharge. This discharge is studied with a fast ICCD camera, in many cases combined with optics to enable stereoscopic imaging. We find that reconnections as defined above occur frequently. Merging on the other hand was only observed at a pressure of 25 mbar and a tip separation of 2 mm, i.e., for a reduced tip distance of p*d=50 micrometer*bar. In this case the full width at half maximum of the streamer channel is more than 10 times as large as the tip separation. At higher pressures or with a wire anode, merging was not observed.
A lightning surge generator generates a high voltage surge with 1.2 microsec. rise time. The generator fed a spark gap of two pointed electrodes at 0.7 to 1.2 m distances. Gap breakdown occurred between 0.1 and 3 microsec. after the maximum generator voltage of approximately 850 kV. Various scintillator detectors with different response time recorded bursts of hard radiation in nearly all surges. The bursts were detected over the time span between approximately half of the maximum surge voltage and full gap breakdown. The consistent timing of the bursts with the high-voltage surge excluded background radiation as source for the high intensity pulses. In spite of the symmetry of the gap, negative surges produced more intense radiation than positive. This has been attributed to additional positive discharges from the measurement cabinet which occurred for negative surges. Some hard radiation signals were equivalent to several MeV. Pile-up occurs of lesser energy X-ray quanta, but still with a large fraction of these with an energy of the order of 100 keV. The bursts occurred within the 4 nanosec. time resolution of the fastest detector. The relation between the energy of the X-ray quanta and the signal from the scintillation detector is quite complicated, as shown by the measurements.
The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures 3times10^5 K <~ T <~ 3times10^6 K is calculated over a wide range of densities, using the method of free energy minimization in the framework of the chemical picture of plasmas. The free energy model is an improved extension of our model previously developed for pure carbon (Phys. Rev. E, 72, 046402; arXiv:physics/0510006). The internal partition functions of bound species are calculated by a self-consistent treatment of each ionization stage in the plasma environment taking into account pressure ionization. The long-range Coulomb interactions between ions and screening of the ions by free electrons are included using our previously published analytical model, recently improved, in particular for the case of mixtures. We also propose a simple but accurate method of calculation of the EOS of partially ionized binary mixtures based on detailed ionization balance calculations for pure substances.
Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
Two-dimensional, meso-resolved numerical simulations are performed to investigate the complete shock-to-detonation transition (SDT) process in a mixture of liquid nitromethane (NM) and air-filled, circular cavities. The shock-induced initiation behaviors resulting from the cases with neat NM, NM with an array of regularly spaced cavities, and NM with randomly distributed cavities are examined. For the case with randomly distributed cavities, hundreds of cavities are explicitly resolved in the simulations using a diffuse-interface approach to treat two immiscible fluids and GPU-enabled parallel computing. Without invoking any empirically calibrated, phenomenological models, the reaction rate in the simulations is governed by Arrhenius kinetics. For the cases with neat NM, the resulting SDT process features a superdetonation that evolves from a thermal explosion after a delay following the passage of the incident shock wave and eventually catches up with the leading shock front. For the cases wherein mesoscale heterogeneities are explicitly considered, a gradual SDT process is captured. These two distinct initiation behaviors for neat NM and heterogeneous NM mixtures agree with experimental findings. Via examining the global reaction rate of the mixture, a unique time scale characterizing the SDT process, i.e., the overtake time, is measured for each simulation. For an input shock pressure less than approximately $9.4~mathrm{GPa}$, the overtake time resulting from a heterogeneous mixture is shorter than that for neat NM. This sensitizing effect is more pronounced for lower input shock pressures. A random distribution of cavities is found to be more effective in enhancing the SDT process than a regular array of cavities. Statistical analysis on the meso-resolved simulation data provides more insights into the mechanism of energy release underlying the SDT process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا