Do you want to publish a course? Click here

Resolving Gas Dynamics in the Circumnuclear Region of a Disk Galaxy in a Cosmological Simulation

118   0   0.0 ( 0 )
 Added by Robyn Levine
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a hydrodynamic adaptive mesh refinement code, we simulate the growth and evolution of a galaxy, which could potentially host a supermassive black hole, within a cosmological volume. Reaching a dynamical range in excess of 10 million, the simulation follows the evolution of the gas structure from super-galactic scales all the way down to the outer edge of the accretion disk. Here, we focus on global instabilities in the self-gravitating, cold, turbulence-supported, molecular gas disk at the center of the model galaxy, which provide a natural mechanism for angular momentum transport down to sub-pc scales. The gas density profile follows a power-law scaling as r^-8/3, consistent with an analytic description of turbulence in a quasi-stationary circumnuclear disk. We analyze the properties of the disk which contribute to the instabilities, and investigate the significance of instability for the galaxys evolution and the growth of a supermassive black hole at the center.



rate research

Read More

We present here a self-consistent cosmological zoom-in simulation of a triple supermassive black hole (SMBH) system forming in a complex multiple galaxy merger. The simulation is run with an updated version of our code KETJU, which is able to follow the motion of SMBHs down to separations of tens of Schwarzschild radii while simultaneously modeling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation, and stellar and AGN feedback. Our simulation produces initially a SMBH binary system for which the hardening process is interrupted by the late arrival of a third SMBH. The KETJU code is able to accurately model the complex behavior occurring in such a triple SMBH system, including the ejection of one SMBH to a kiloparsec-scale orbit in the galaxy due to strong three-body interactions as well as Lidov-Kozai oscillations suppressed by relativistic precession when the SMBHs are in a hierarchical configuration. One pair of SMBHs merges $sim 3,mathrm{Gyr}$ after the initial galaxy merger, while the remaining binary is at a parsec-scale separation when the simulation ends at redshift $z=0$. We also show that KETJU can capture the effects of the SMBH binaries and triplets on the surrounding stellar population, which can affect the binary merger timescales as the stellar density in the system evolves. Our results demonstrate the importance of dynamically resolving the complex behavior of multiple SMBHs in galactic mergers, as such systems cannot be readily modeled using simple orbit-averaged semi-analytic models.
106 - A.A. Smirnova 2007
We present an analysis of 3D spectra of Mrk 533, observed with the integral-field spectrograph MPFS and using the Fabry Perot Interferometer (FPI) of the SAO RAS 6-m telescope. We found emissions of gas from the active Sy 2 nucleus in the centre and also from the HII regions in a spiral structure and a circumnuclear region. The gas kinematics shows regular non-circular motions in the wide range of galactocentric distances from 500 pc up to 15 kpc. The maps of inward and outward radial motions of the ionized gas was constructed. We found that the narrow line region (NLR) is composed of at least two (probably three) kinematically separated regions. We detect a stratification in the NLR of Mrk 533 with the outflow velocity ranging from 20-50 km/s to 600-700 km/s, respectively, on the radial distances of ~2.5 and ~1.5 kpc. The maximal outflow velocity comes from the nucleus and corresponds to the position of the observed radio structure, which is assumed to be created in an approaching jet. We suggest that these ionized gas outflows are triggered by the radio jet intrusion in an ambient medium.
We report high-resolution CO(1-0) observations in the central 6 kpc of the LINER galaxy NGC 5005 with the Owens Valley Radio Observatory millimeter array. Molecular gas is distributed in three components - a ring at a radius of about 3 kpc, a strong central condensation, and a stream to the northwest of the nucleus but inside the 3 kpc ring. The central condensation is a disk of about 1 kpc radius with a molecular gas mass of 2 x 10^9 M_sun. The stream between the 3 kpc ring and the nuclear disk lies on a straight dust lane seen in the optical. If this material moves in the plane of the galaxy, it has a velocity offset by up to ~ 150 km/s from galactic rotation. We suggest that an optically inconspicuous stellar bar lying within the 3 kpc ring can explain the observed gas dynamics. This bar is expected to connect the nuclear disk and the ring along the position angle of the northwest stream. A position-velocity cut in this direction reveals features which match the characteristic motions of gas in a barred potential. Our model indicates that gas in the northwest stream is on an x_1 orbit at the bars leading edge; it is falling into the nucleus with a large noncircular velocity, and will eventually contribute about 2 x 10^8 M_sun to the nuclear disk. If most of this material merges with the disk on its first passage of pericenter, the gas accretion rate during the collision will be 50 M_sun/yr. We associate the nuclear disk with an inner 2:1 Lindblad resonance, and the 3 kpc ring with an inner 4:1 Lindblad resonance. The high rate of bar-driven inflow and the irregular appearance of the northwest stream suggest that a major fueling event is in progress in NGC 5005. Such episodic (rather than continuous) gas supply can regulate the triggering of starburst and accretion activity in galactic nuclei. (abridged)
We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurements with those previously published and considering the specific geometry of this Seyfert 2 galaxy, we conduct a multi-species Bayesian likelihood analysis of the density, temperature, and relative molecular abundances of HCN, HNC, CS, and HCO+. We find that these molecules trace warm (T > 100 K) gas of H2 number densities 10^4.2 - 10^4.9 cm^-3. Our models also place strong constraints on the column densities and relative abundances of these molecules, as well as on the total mass in the circumnuclear disk. Using the uniform calibration afforded by the broad Z-Spec bandpass, we compare our line ratios to X-ray dominated region (XDR) and photon-dominated region models. The majority of our line ratios are consistent with the XDR models at the densities indicated by the likelihood analysis, lending substantial support to the emerging interpretation that the energetics in the circumnuclear disk of NGC 1068 are dominated by accretion onto an active galactic nucleus.
We have mapped the central region of NGC 4945 in the $J=2to1$ transition of $^{12}$CO, $^{13}$CO, and C$^{18}$O, as well as the continuum at 1.3 mm, at an angular resolution of $5farc times 3farc$ with the Submillimeter Array. The relative proximity of NGC 4945 (distance of only 3.8 Mpc) permits a detailed study of the circumnuclear molecular gas and dust in a galaxy exhibiting both an AGN (classified as a Seyfert 2) and a circumnuclear starburst in an inclined ring with radius $sim$2farcs5 ($sim$50 pc). We find that all three molecular lines trace an inclined rotating disk with major axis aligned with that of the starburst ring and large-scale galactic disk, and which exhibits solid-body rotation within a radius of $sim$5farc ($sim$95 pc). We infer an inclination for the nuclear disk of $62^{circ} pm 2^{circ}$, somewhat smaller than the inclination of the large-scale galactic disk of $sim$$78^{circ}$. The continuum emission at 1.3 mm also extends beyond the starburst ring, and is dominated by thermal emission from dust. If it traces the same dust emitting in the far-infrared, then the bulk of this dust must be heated by star-formation activity rather than the AGN. We discover a kinematically-decoupled component at the center of the disk with a radius smaller than $1farcs4$ (27 pc), but which spans approximately the same range of velocities as the surrounding disk. This component has a higher density than its surroundings, and is a promising candidate for the circumnuclear molecular torus invoked by AGN unification models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا