Do you want to publish a course? Click here

The Circumnuclear Molecular Gas in the Seyfert Galaxy NGC4945

95   0   0.0 ( 0 )
 Added by Richard C. Y. Chou
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have mapped the central region of NGC 4945 in the $J=2to1$ transition of $^{12}$CO, $^{13}$CO, and C$^{18}$O, as well as the continuum at 1.3 mm, at an angular resolution of $5farc times 3farc$ with the Submillimeter Array. The relative proximity of NGC 4945 (distance of only 3.8 Mpc) permits a detailed study of the circumnuclear molecular gas and dust in a galaxy exhibiting both an AGN (classified as a Seyfert 2) and a circumnuclear starburst in an inclined ring with radius $sim$2farcs5 ($sim$50 pc). We find that all three molecular lines trace an inclined rotating disk with major axis aligned with that of the starburst ring and large-scale galactic disk, and which exhibits solid-body rotation within a radius of $sim$5farc ($sim$95 pc). We infer an inclination for the nuclear disk of $62^{circ} pm 2^{circ}$, somewhat smaller than the inclination of the large-scale galactic disk of $sim$$78^{circ}$. The continuum emission at 1.3 mm also extends beyond the starburst ring, and is dominated by thermal emission from dust. If it traces the same dust emitting in the far-infrared, then the bulk of this dust must be heated by star-formation activity rather than the AGN. We discover a kinematically-decoupled component at the center of the disk with a radius smaller than $1farcs4$ (27 pc), but which spans approximately the same range of velocities as the surrounding disk. This component has a higher density than its surroundings, and is a promising candidate for the circumnuclear molecular torus invoked by AGN unification models.



rate research

Read More

We present a 190-307 GHz broadband spectrum obtained with Z-Spec of NGC 1068 with new measurements of molecular rotational transitions. After combining our measurements with those previously published and considering the specific geometry of this Seyfert 2 galaxy, we conduct a multi-species Bayesian likelihood analysis of the density, temperature, and relative molecular abundances of HCN, HNC, CS, and HCO+. We find that these molecules trace warm (T > 100 K) gas of H2 number densities 10^4.2 - 10^4.9 cm^-3. Our models also place strong constraints on the column densities and relative abundances of these molecules, as well as on the total mass in the circumnuclear disk. Using the uniform calibration afforded by the broad Z-Spec bandpass, we compare our line ratios to X-ray dominated region (XDR) and photon-dominated region models. The majority of our line ratios are consistent with the XDR models at the densities indicated by the likelihood analysis, lending substantial support to the emerging interpretation that the energetics in the circumnuclear disk of NGC 1068 are dominated by accretion onto an active galactic nucleus.
We present a detailed study of the molecular gas in the fast AGN-driven outflow in the nearby radio-loud Seyfert galaxy IC 5063. Using ALMA observations of a number of tracers (12CO(1-0), 12CO(2-1), 12CO(3-2), 13CO(2-1) and HCO+(4-3)), we map the differences in excitation, density and temperature of the gas. The results show that in the immediate vicinity of the radio jet, a fast outflow, with velocities up to 800 km/s, is occurring of which the gas has high excitation temperatures in the range 30-55 K, demonstrating the direct impact of the jet on the ISM. The relative brightness of the CO lines show that the outflow is optically thin. We estimate the mass of the molecular outflow to be 1.2 x 10^6 Msol and likely to be a factor 2-3 larger. This is similar to that of the outflow of atomic gas, but much larger than that of the ionised outflow, showing that the outflow is dominated by cold gas. The total mass outflow rate we estimate to be ~12 Msol/yr. The mass of the outflow is much smaller than the total gas mass of the ISM of IC 5063. Therefore, although the influence of the radio jet is very significant in the inner regions, globally speaking the impact will be very modest. We use RADEX modelling to explore the physical conditions of the molecular gas in the outflow. Models with the outflowing gas being quite clumpy give the most consistent results and our preferred solutions have kinetic temperatures in the range 20-100 K and densities between 10^5 and 10^6 cm^-3. The resulting pressures are 10^6-10^7.5 K cm^-3, about two orders of magnitude higher than in the outer quiescent disk. The results strongly suggest that the outflow is driven by the radio jet expanding into a clumpy medium, creating a cocoon of gas which is pushed away from the jet axis resulting in a lateral outflow, very similar to what is predicted by numerical simulations.
We investigate if the active galactic nucleus (AGN) of Mrk 590, whose supermassive black hole was until recently highly accreting, is turning off due to a lack of central gas to fuel it. We analyse new sub-arcsecond resolution ALMA maps of the $^{12}$CO(3-2) line and 344 GHz continuum emission in Mrk 590. We detect no $^{12}$CO(3-2) emission in the inner 150 pc, constraining the central molecular gas mass to $M({rm H_2}) lesssim 1.6 times 10^5, {M_{odot}}$, no more than a typical giant molecular gas cloud, for a CO luminosity to gas mass conversion factor of $alpha_{rm CO}sim 0.8,{M_{odot},rm (K ,km,s^{-1},pc^{2}})^{-1}$. However, there is still potentially enough gas to fuel the black hole for another $2.6 times 10^5$ years assuming Eddington-limited accretion. We therefore cannot rule out that the AGN may just be experiencing a temporary feeding break, and may turn on again in the near future. We discover a ring-like structure at a radius of $sim 1$ kpc, where a gas clump exhibiting disturbed kinematics and located just $sim 200$ pc west of the AGN, may be refueling the centre. Mrk 590 does not have significantly less gas than other nearby AGN host galaxies at kpc scales, confirming that gas reservoirs at these scales provide no direct indication of on-going AGN activity and accretion rates. Continuum emission detected in the central 150 pc likely originates from warm AGN-heated dust, although contributions from synchrotron and free-free emission cannot be ruled out.
62 - Kotaro Kohno , Ryohei Kawabe , 1998
We present high resolution (3 - 5) observations of CO(1-0) and HCN(1-0) emission from the circumnuclear star forming ring in the barred spiral galaxy NGC 6951, a host of a type-2 Seyfert, using the Nobeyama Millimeter Array and 45 m telescope. We find that most of the HCN emission is associated with the circumnuclear ring, where vigorous star formation occurs. The HCN to CO integrated intensity ratio is also enhanced in the star forming ring; the peak value of HCN/CO ratio is 0.18, which is comparable to the ratio in the starbursts NGC 253 and M82. The formation mechanism of dense molecular gas has been investigated. We find that the shocks along the orbit crowding do not promote the formation of the dense molecular gas effectively but enhance the presence of low density GMCs. Instead, gravitational instabilities of the gas can account for the dense molecular gas formation. The HCN/CO ratio toward the Seyfert nucleus of NGC 6951 is a rather normal value (0.086), in contrast with other Seyferts NGC 1068 and M51 where extremely high HCN/CO value of ~ 0.5 have been reported.
We surveyed the circumnuclear disk of the Seyfert galaxy NGC1068 between the frequencies 86.2 GHz and 115.6 GHz, and identified 17 different molecules. Using a time and depth dependent chemical model we reproduced the observational results, and show that the column densities of most of the species are better reproduced if the molecular gas is heavily pervaded by a high cosmic ray ionization rate of about 1000 times that of the Milky Way. We discuss how molecules in the NGC1068 nucleus may be influenced by this external radiation, as well as by UV radiation fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا