No Arabic abstract
We report the discovery of a light echo (LE) from the Type Ia supernova (SN) 2006X in the nearby galaxy M100. The presence of the LE is supported by analysis of both the Advanced Camera for Surveys (ACS) images taken with the {it Hubble Space Telescope (HST)} at $sim$300 d after maximum brightness and the Keck optical spectrum obtained at a similar phase. In the image procedure, both the radial-profile analysis and the point-spread-function (PSF) subtraction method resolve significant excess emission at 2--5 ACS pixels ($sim0.05-0.13$) from the center. In particular, the PSF-subtracted ACS images distinctly appear to have an extended, ring-like echo. Due to limitations of the image resolution, we cannot confirm any structure or flux within 2 ACS pixels from the SN. The late-time spectrum of SN 2006X can be reasonably fit with two components: a nebular spectrum of a normal SN Ia and a synthetic LE spectrum. Both image and spectral analysis show a rather blue color for the emission of the LE, suggestive of a small average grain size for the scattering dust. Using the Cepheid distance to M100 of 15.2 Mpc, we find that the dust illuminated by the resolved LE is $sim$27--170 pc from the SN. The echo inferred from the nebular spectrum appears to be more luminous than that resolved in the images (at the $sim2sigma$ level), perhaps suggesting the presence of an inner echo at $<$2 ACS pixels ($sim0.05$). It is not clear, however, whether this possible local echo was produced by a distinct dust component (i.e., the local circumstellar dust) or by a continuous, larger distribution of dust as with the outer component. Nevertheless, our detection of a significant echo in SN 2006X confirms that this supernova was produced in a dusty environment having unusual dust properties.
We identify a light echo candidate from Hubble Space Telescope (HST) imaging of NGC 2441, the host galaxy of the Type Ia supernova 1995E. From the echos angular size and the estimated distance to the host galaxy, we find a distance of 207 +/- 35 pc between the dust and the site of the supernova. If confirmed, this echo brings the total number of observed non-historical Type Ia light echoes to three -- the others being SN 1991T and SN 1998bu -- suggesting they are not uncommon. We compare the properties of the known Type Ia supernova echoes and test models of light echoes developed by Patat et al. (2005). HST photometry of the SN 1991T echo shows a fading which is consistent with scattering by dust distributed in a sphere or shell around the supernova. Light echoes have the potential to answer questions about the progenitors of Type Ia supernovae and more effort should be made for their detection given the importance of Type Ia supernovae to measurements of dark energy.
We present extensive optical (UBVRI), near-infrared (JK) light curves and optical spectroscopy of the Type Ia supernova (SN) 2006X in the nearby galaxy NGC 4321 (M100). Our observations suggest that either SN 2006X has an intrinsically peculiar color evolution, or it is highly reddened [E(B - V)_{host} = 1.42+/-0.04 mag] with R_V = 1.48+/-0.06, much lower than the canonical value of 3.1 for the average Galactic dust. SN 2006X also has one of the highest expansion velocities ever published for a SN Ia. Compared with the other SNe Ia we analyzed, SN 2006X has a broader light curve in the U band, a more prominent bump/shoulder feature in the V and R bands, a more pronounced secondary maximum in the I and near-infrared bands, and a remarkably smaller late-time decline rate in the B band. The B - V color evolution shows an obvious deviation from the Lira-Phillips relation at 1 to 3 months after maximum brightness. At early times, optical spectra of SN 2006X displayed strong, high-velocity features of both intermediate-mass elements (Si, Ca, and S) and iron-peak elements, while at late times they showed a relatively blue continuum, consistent with the blue U-B and B-V colors at similar epochs. A light echo and/or the interaction of the SN ejecta and its circumstellar material may provide a plausible explanation for its late-time photometric and spectroscopic behavior. Using the Cepheid distance of M100, we derive a Hubble constant of 72.7+/-8.2 km s^{-1} Mpc^{-1}(statistical) from the normalized dereddened luminosity of SN 2006X. We briefly discuss whether abnormal dust is a universal signature for all SNe Ia, and whether the most rapidly expanding objects form a subclass with distinct photometric and spectroscopic properties.
CCD BVRI photometry is presented for type Ia supernova 2008gy. The light curves match the template curves for fast-declining SN Ia, but the colors appear redder than average, and the SN may also be slightly subluminous. SN 2008gy is found to be located far outside the boundaries of three nearest galaxies, each of them has nearly equal probability to be the host galaxy.
We present optical spectroscopic and photometric observations of Type Ia supernova (SN) 2006X from --10 to +91 days after the $B$-band maximum. This SN exhibits one of the highest expansion velocity ever published for SNe Ia. At premaximum phases, the spectra show strong and broad features of intermediate-mass elements such as Si, S, Ca, and Mg, while the O{sc i}$lambda$7773 line is weak. The extremely high velocities of Si{sc ii} and S{sc ii} lines and the weak O{sc i} line suggest that an intense nucleosynthesis might take place in the outer layers, favoring a delayed detonation model. Interestingly, Si{sc ii}$lambda$5972 feature is quite shallow, resulting in an unusually low depth ratio of Si{sc ii}$lambda$5972 to $lambda$6355, $cal R$(Si{sc ii}). The low $cal R$(Si{sc ii}) is usually interpreted as a high photospheric temperature. However, the weak Si{sc iii}$lambda$4560 line suggests a low temperature, in contradiction to the low $cal R$(Si{sc ii}). This could imply that the Si{sc ii}$lambda$5972 line might be contaminated by underlying emission. We propose that $cal R$(Si{sc ii}) may not be a good temperature indicator for rapidly expanding SNe Ia at premaximum phases.
We have conducted a systematic and comprehensive monitoring programme of the Type Ia supernova 2000cx at late phases using the VLT and HST. The VLT observations cover phases 360 to 480 days past maximum brightness and include photometry in the BVRIJH bands, together with a single epoch in each of U and Ks. While the optical bands decay by about 1.4 mag per 100 days, we find that the near-IR magnitudes stay virtually constant during the observed period. This means that the importance of the near-IR to the bolometric light curve increases with time. The finding is also in agreement with our detailed modeling of a Type Ia supernova in the nebular phase. In these models, the increased importance of the near-IR is a temperature effect. We note that this complicates late-time studies where often only the V band is well monitored. In particular, it is not correct to assume that any optical band follows the bolometric light curve at these phases, and any conclusions based on such assumptions, e.g., regarding positron-escape, must be regarded as premature. A very simple model where all positrons are trapped can reasonably well account for the observations. The nickel mass deduced from the positron tail of this light curve is lower than found from the peak brightness, providing an estimate of the fraction of late-time emission that is outside of the observed wavelength range. Our detailed models show the signature of an infrared catastrophe at these epochs, which is not supported by the observations.