Do you want to publish a course? Click here

Early Spectral Evolution of the Rapidly Expanding Type Ia SN 2006X

112   0   0.0 ( 0 )
 Added by Masayuki Yamanaka
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present optical spectroscopic and photometric observations of Type Ia supernova (SN) 2006X from --10 to +91 days after the $B$-band maximum. This SN exhibits one of the highest expansion velocity ever published for SNe Ia. At premaximum phases, the spectra show strong and broad features of intermediate-mass elements such as Si, S, Ca, and Mg, while the O{sc i}$lambda$7773 line is weak. The extremely high velocities of Si{sc ii} and S{sc ii} lines and the weak O{sc i} line suggest that an intense nucleosynthesis might take place in the outer layers, favoring a delayed detonation model. Interestingly, Si{sc ii}$lambda$5972 feature is quite shallow, resulting in an unusually low depth ratio of Si{sc ii}$lambda$5972 to $lambda$6355, $cal R$(Si{sc ii}). The low $cal R$(Si{sc ii}) is usually interpreted as a high photospheric temperature. However, the weak Si{sc iii}$lambda$4560 line suggests a low temperature, in contradiction to the low $cal R$(Si{sc ii}). This could imply that the Si{sc ii}$lambda$5972 line might be contaminated by underlying emission. We propose that $cal R$(Si{sc ii}) may not be a good temperature indicator for rapidly expanding SNe Ia at premaximum phases.



rate research

Read More

We report initial observations and analysis on the Type IIb SN~2016gkg in the nearby galaxy NGC~613. SN~2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN~2016gkg shows strong similarities with other Type IIb SNe, in particular with respect to the he~emission features observed in both the optical and near infrared. SN~2016gkg evolved faster than the prototypical Type~IIb SN~1993J, with a decline similar to that of SN~2011dh after the first peak. The analysis of archival {it Hubble Space Telescope} images indicate a pre-explosion source at SN~2016gkgs position, suggesting a progenitor star with a $sim$mid F spectral type and initial mass $15-20$msun, depending on the distance modulus adopted for NGC~613. Modeling the temperature evolution within $5,rm{days}$ of explosion, we obtain a progenitor radius of $sim,48-124$rsun, smaller than that obtained from the analysis of the pre-explosion images ($240-320$rsun).
438 - Xiaofeng Wang 2007
We present extensive optical (UBVRI), near-infrared (JK) light curves and optical spectroscopy of the Type Ia supernova (SN) 2006X in the nearby galaxy NGC 4321 (M100). Our observations suggest that either SN 2006X has an intrinsically peculiar color evolution, or it is highly reddened [E(B - V)_{host} = 1.42+/-0.04 mag] with R_V = 1.48+/-0.06, much lower than the canonical value of 3.1 for the average Galactic dust. SN 2006X also has one of the highest expansion velocities ever published for a SN Ia. Compared with the other SNe Ia we analyzed, SN 2006X has a broader light curve in the U band, a more prominent bump/shoulder feature in the V and R bands, a more pronounced secondary maximum in the I and near-infrared bands, and a remarkably smaller late-time decline rate in the B band. The B - V color evolution shows an obvious deviation from the Lira-Phillips relation at 1 to 3 months after maximum brightness. At early times, optical spectra of SN 2006X displayed strong, high-velocity features of both intermediate-mass elements (Si, Ca, and S) and iron-peak elements, while at late times they showed a relatively blue continuum, consistent with the blue U-B and B-V colors at similar epochs. A light echo and/or the interaction of the SN ejecta and its circumstellar material may provide a plausible explanation for its late-time photometric and spectroscopic behavior. Using the Cepheid distance of M100, we derive a Hubble constant of 72.7+/-8.2 km s^{-1} Mpc^{-1}(statistical) from the normalized dereddened luminosity of SN 2006X. We briefly discuss whether abnormal dust is a universal signature for all SNe Ia, and whether the most rapidly expanding objects form a subclass with distinct photometric and spectroscopic properties.
194 - T. Zhang , X. Wang , W. Li 2009
We present optical photometry and spectra for the Type Ia supernova (SN Ia) 2007gi in the nearby galaxy NGC 4036. SN 2007gi is characterized by extremely high-velocity (HV) features of the intermediate-mass elements (Si, Ca, and S), with expansion velocities ($v_{rm exp}$) approaching $sim$15,500 km s$^{-1}$ near maximum brightness (compared to $sim$10,600 km s$^{-1}$ for SNe Ia with normal $v_{rm exp}$). SN 2007gi reached a $B$-band peak magnitude of 13.25$pm$0.04 mag with a decline rate of $Delta m_{15}(B)$(true) = 1.33$pm$0.09 mag. The $B$-band light curve of SN 2007gi demonstrated an interesting two-stage evolution during the nebular phase, with a decay rate of 1.16$pm$0.05 mag (100 days)$^{-1}$ during $t = 60$--90 days and 1.61$pm0.04$ mag (100 days)$^{-1}$ thereafter. Such a behavior was also observed in the HV SN Ia 2006X, and might be caused by the interaction between supernova ejecta and circumstellar material (CSM) around HV SNe Ia. Based on a sample of a dozen well-observed $R$-band (or unfiltered) light curves of SNe Ia, we confirm that the HV events may have a faster rise time to maximum than the ones with normal $v_{rm exp}$.
109 - Marco Palla 2021
We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding to different white dwarf progenitors (near-Chandrasekar and sub-Chandrasekar) taken from the literature. We adopt a fixed delay time distribution function for Type Ia SNe , in order to avoid degeneracies in the analysis of the different nucleosynthesis channels. We also combine yields for different Type Ia SN progenitors in order to test the contribution to chemical evolution of different Type Ia SN channels. The results of the models are compared with recent LTE and NLTE observational data. We find that classical W7 and WDD2 models produce Fe masses and [$alpha$/Fe] abundance patterns similar to more recent and physical near-Chandrasekar and sub- Chandrasekar models. For Fe-peak elements, we find that the results strongly depend either on the white dwarf explosion mechanism (deflagration-to-detonation, pure deflagration, double detonation) or on the initial white dwarf conditions (central density, explosion pattern). The comparison of chemical evolution model results with observations suggests that a combination of near-Chandrasekar and sub-Chandrasekar yields is necessary to reproduce the data of V, Cr, Mn and Ni, with different fractions depending on the adopted massive stars stellar yields. This comparison also suggests that NLTE and singly ionised abundances should be definitely preferred when dealing with most of Fe-peak elements at low metallicity.
We present photometry and time-series spectroscopy of the nearby type Ia supernova (SN Ia) SN 2015F over $-16$ days to $+80$ days relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). SN 2015F is a slightly sub-luminous SN Ia with a decline rate of $Delta m15(B)=1.35 pm 0.03$ mag, placing it in the region between normal and SN 1991bg-like events. Our densely-sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II $lambda 6580$ absorption until $-4$ days, and high-velocity Ca II is particularly strong at $<-10$ days at expansion velocities of $simeq$23000kms. At early times, our spectral modelling with syn++ shows strong evidence for iron-peak elements (Fe II, Cr II, Ti II, and V II) expanding at velocities $>14000$ km s$^{-1}$, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at $sim$6800 AA that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 AA feature is weakly present in other normal SN Ia events, and common in the SN 1991bg-like sub-class.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا