Do you want to publish a course? Click here

Imposition of Different Optimizing Object with Non-Linear Constraints on Flux Sampling and Elimination of Free Futile Pathways

389   0   0.0 ( 0 )
 Added by Lu Xie
 Publication date 2009
  fields Biology
and research's language is English




Ask ChatGPT about the research

Constraint-based modeling has been widely used on metabolic networks analysis, such as biosynthetic prediction and flux optimization. The linear constraints, like mass conservation constraint, reversibility constraint, biological capacity constraint, can be imposed on linear algorithms. However, recently a non-linear constraint based on the second thermodynamic law, known as loop law, has emerged and challenged the existing algorithms. Proven to be unfeasible with linear solutions, this non-linear constraint has been successfully imposed on the sampling process. In this place, Monte - Carlo sampling with Metropolis criterion and Simulated Annealing has been introduced to optimize the Biomass synthesis of genome scale metabolic network of Helicobacter pylori (iIT341 GSM / GPR) under mass conservation constraint, biological capacity constraint, and thermodynamic constraints including reversibility and loop law. The sampling method has also been employed to optimize a non-linear objective function, the Biomass synthetic rate, which is unified by the total income number of reducible electrons. To verify whether a sample contains internal loops, an automatic solution has been developed based on solving a set of inequalities. In addition, a new type of pathway has been proposed here, the Futile Pathway, which has three properties: 1) its mass flow could be self-balanced; 2) it has exchange reactions; 3) it is independent to the biomass synthesis. To eliminate the fluxes of the Futile Pathways in the sampling results, a linear programming based method has been suggested and the results have showed improved correlations among the reaction fluxes in the pathways related to Biomass synthesis.



rate research

Read More

Background: The global spread of the severe acute respiratory syndrome (SARS) epidemic has clearly shown the importance of considering the long-range transportation networks in the understanding of emerging diseases outbreaks. The introduction of extensive transportation data sets is therefore an important step in order to develop epidemic models endowed with realism. Methods: We develop a general stochastic meta-population model that incorporates actual travel and census data among 3 100 urban areas in 220 countries. The model allows probabilistic predictions on the likelihood of country outbreaks and their magnitude. The level of predictability offered by the model can be quantitatively analyzed and related to the appearance of robust epidemic pathways that represent the most probable routes for the spread of the disease. Results: In order to assess the predictive power of the model, the case study of the global spread of SARS is considered. The disease parameter values and initial conditions used in the model are evaluated from empirical data for Hong Kong. The outbreak likelihood for specific countries is evaluated along with the emerging epidemic pathways. Simulation results are in agreement with the empirical data of the SARS worldwide epidemic. Conclusions: The presented computational approach shows that the integration of long-range mobility and demographic data provides epidemic models with a predictive power that can be consistently tested and theoretically motivated. This computational strategy can be therefore considered as a general tool in the analysis and forecast of the global spreading of emerging diseases and in the definition of containment policies aimed at reducing the effects of potentially catastrophic outbreaks.
187 - Niko Komin , Raul Toral 2009
The subject of analysis is a non-linear three-compartment model, widely used in pharmacological absorption studies. It has been transformed into a general form, thus leading automatically to an appropriate approximation. This made the absorption profile accessible and expressions for absorption times, apparent permeabilities and equilibrium values were given. These findings allowed a profound analysis of results from non-linear curve fits and delivered the dependencies on the systems parameters over a wide range of values. The results were applied to an absorption experiment with multidrug transporter-affected antibiotic CNV97100 on Caco-2 cell monolayers.
We investigate Ussings unidirectional fluxes and flux ratios of charged tracers motivated particularly by the insightful proposal of Hodgkin and Keynes on a relation between flux ratios and channel structure. Our study is based on analysis of quasi-one-dimensional Poisson-Nernst-Planck type models for ionic flows through membrane channels. This class of models includes the Poisson equation that determines the electrical potential from the charges present and is in that sense consistent. Ussings flux ratios generally depend on all physical parameters involved in ionic flows, particularly, on bulk conditions and channel structures. Certain setups of ion channel experiments result in flux ratios that are universal in the sense that their values depend on bulk conditions but not on channel structures; other setups lead to flux ratios that are specific in the sense that their values depend on channel structures too. Universal flux ratios could serve some purposes better than specific flux ratios in some circumstances and worse in other circumstances. We focus on two treatments of tracer flux measurements that serve as estimators of important properties of ion channels. The first estimator determines the flux of the main ion species from measurements of the flux of its tracer. Our analysis suggests a better experimental design so that the flux ratio of the tracer flux and the main ion flux is universal. The second treatment of tracer fluxes concerns ratios of fluxes and experimental setups that try to determine some properties of channel structure. We analyze the two widely used experimental designs of estimating flux ratios and show that the most widely used method depends on the spatial distribution of permanent charge so this flux ratio is specific and thus allows estimation of (some of) the properties of that permanent charge, even with ideal ionic solutions. ...
One of the answers to the measurement problem in quantum theory is given by the Copenhagen-Interpretation of quantum theory (i.e. orthodox quantum theory) in which the wave function collapse happens in (by) the mind of observer. In fact, at first, great scientists like Von Neumann, London, Bauer and Wigner (initially) believed that the wave function collapse occurs in the brain or is caused by the consciousness of observer. However, this issue has been stayed yet very controversial. In fact, there are many challenging discussions about the survival of quantum effects in microscopic structures of the human brain, which is mainly because of quick decoherence of quantum states due to hot, wet and noisy environment of the brain that forbids long life coherence for brain processing. Nevertheless, there are also several arguments and evidences that emergence of large coherent states is feasible in the brain. In this paper, our approach is based on the latter in which macroscopic quantum states are probable in the human brain. Here, we simulate the delayed luminescence of photons in neurons with a Brassard-like teleportation circuit, i.e. equivalent to the transfer of quantum states of photons through the visual pathways from retina to the visual cortex. Indeed, our simulation considers both classical and quantum mechanical aspects of processing in neurons. As a result and based on our simulation, it is possible for our brain to receive the exact quantum states of photons in the visual cortex to be collapsed by our consciousness, which supports the Copenhagen-Interpretation of measurement problem in quantum theory.
The multisite phosphorylation-dephosphorylation cycle is a motif repeatedly used in cell signaling. This motif itself can generate a variety of dynamic behaviors like bistability and ultrasensitivity without direct positive feedbacks. In this paper, we study the number of positive steady states of a general multisite phosphorylation-dephosphorylation cycle, and how the number of positive steady states varies by changing the biological parameters. We show analytically that (1) for some parameter ranges, there are at least n+1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n-1 steady states (in particular, this implies that for n=2, including single levels of MAPK cascades, there are at most three steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n+1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا