Do you want to publish a course? Click here

Gravitational lensing by the supermassive black hole in the center of M31

323   0   0.0 ( 0 )
 Added by Valerio Bozza
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the possibility of observing gravitational lensing in the weak deflection regime by the supermassive black hole in the center of the galaxy M31. This black hole is significantly more massive than the black hole in the center of our Galaxy qualifying itself as a more effective lens. However, it is also more distant and the candidate stellar sources appear consequently fainter. As potential sources we separately consider stars belonging to the bulge, to the disk, to the triple nucleus formed by P1+P2 and by the recently discovered inner cluster P3. We calculate the number of simultaneously lensed stars at a given time as a function of the threshold magnitude required for the secondary image. For observations in the K-band we find 1.4 expected stars having secondary images brighter than K=24 and 182 brighter than K=30. For observations in the V-band we expect 1.3 secondary images brighter than V=27 and 271 brighter than V=33. The bulge stars have the highest chance to be lensed by the supermassive black hole, whereas the disk and the composite nucleus stars contribute by 10% each. The typical angular separation of the secondary images from the black hole range from 1 mas to 0.1. For each population we also show the distribution of the lensed sources as a function of their distance and absolute magnitude, the expected angular positions and velocities of the generated secondary images, the rate and the typical duration of the lensing events.



rate research

Read More

113 - Tuan Do 2019
General Relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. We test this using observations of the Galactic center star S0-2. We combine existing spectroscopic and astrometric measurements from 1995-2017, which cover S0-2s 16-year orbit, with measurements in 2018 March to September which cover three events during its closest approach to the black hole. We detect the combination of special relativistic- and gravitational-redshift, quantified using a redshift parameter, $Upsilon$. Our result, $Upsilon=0.88 pm 0.17$, is consistent with General Relativity ($Upsilon=1$) and excludes a Newtonian model ($Upsilon=0$ ) with a statistical significance of 5 $sigma$.
73 - A. Hees , T. Do , B. M. Roberts 2020
Searching for space-time variations of the constants of Nature is a promising way to search for new physics beyond General Relativity and the standard model motivated by unification theories and models of dark matter and dark energy. We propose a new way to search for a variation of the fine-structure constant using measurements of late-type evolved giant stars from the S-star cluster orbiting the supermassive black hole in our Galactic Center. A measurement of the difference between distinct absorption lines (with different sensitivity to the fine structure constant) from a star leads to a direct estimate of a variation of the fine structure constant between the stars location and Earth. Using spectroscopic measurements of 5 stars, we obtain a constraint on the relative variation of the fine structure constant below $10^{-5}$. This is the first time a varying constant of Nature is searched for around a black hole and in a high gravitational potential. This analysis shows new ways the monitoring of stars in the Galactic Center can be used to probe fundamental physics.
355 - V. Bozza 2007
Extreme gravitational lensing refers to the bending of photon trajectories that pass very close to supermassive black holes and that cannot be described in the conventional weak deflection limit. A complete analytical description of the whole expected phenomenology has been achieved in the recent years using the strong deflection limit. These progresses and possible directions for new investigations are reviewed in this paper at a basic level. We also discuss the requirements for future facilities aimed at detecting higher order gravitational lensing images generated by the supermassive black hole in the Galactic center.
When galaxies collide, dynamical friction drives their central supermassive black holes close enought to each other such that gravitational radiation becomes the leading dissipative effect. Gravitational radiation takes away energy, momentum and angular momentum from the compact binary, such that the black holes finally merge. In the process, the spin of the dominant black hole is reoriented. On observational level, the spins are directly related to the jets, which can be seen at radio frequencies. Images of the X-shaped radio galaxies together with evidence on the age of the jets illustrate that the jets are reoriented, a phenomenon known as spin-flip. Based on the galaxy luminosity statistics we argue here that the typical galaxy encounters involve mass ratios between 1:3 to 1:30 for the central black holes. Based on the spin-orbit precession and gravitational radiation we also argue that for this typical mass ratio in the inspiral phase of the merger the initially dominant orbital angular momentum will become smaller than the spin, which will be reoriented. We prove here that the spin-flip phenomenon typically occurs already in the inspiral phase, and as such is describable by post-Newtonian techniques.
Massive merging black holes will be the primary sources of powerful gravitational waves at low frequency, and will permit to test general relativity with candidate galaxies close to a binary black hole merger. In this paper we identify the typical mass ratio of the two black holes but then show that the distance when gravitational radiation becomes the dominant dissipative effect (over dynamical friction) does not depend on the mass ratio. However the dynamical evolution in the gravitational wave emission regime does. For the typical range of mass ratios the final stage of the merger is preceded by a rapid precession and a subsequent spin-flip of the main black hole. This already occurs in the inspiral phase, therefore can be described analytically by post-Newtonian techniques. We then identify the radio galaxies with a super-disk as those in which the rapidly precessing jet produces effectively a powerful wind, entraining the environmental gas to produce the appearance of a thick disk. These specific galaxies are thus candidates for a merger of two black holes to happen in the astronomically near future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا