Do you want to publish a course? Click here

The spin-flip phenomenon in supermassive black hole binary mergers

123   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive merging black holes will be the primary sources of powerful gravitational waves at low frequency, and will permit to test general relativity with candidate galaxies close to a binary black hole merger. In this paper we identify the typical mass ratio of the two black holes but then show that the distance when gravitational radiation becomes the dominant dissipative effect (over dynamical friction) does not depend on the mass ratio. However the dynamical evolution in the gravitational wave emission regime does. For the typical range of mass ratios the final stage of the merger is preceded by a rapid precession and a subsequent spin-flip of the main black hole. This already occurs in the inspiral phase, therefore can be described analytically by post-Newtonian techniques. We then identify the radio galaxies with a super-disk as those in which the rapidly precessing jet produces effectively a powerful wind, entraining the environmental gas to produce the appearance of a thick disk. These specific galaxies are thus candidates for a merger of two black holes to happen in the astronomically near future.



rate research

Read More

When galaxies collide, dynamical friction drives their central supermassive black holes close enought to each other such that gravitational radiation becomes the leading dissipative effect. Gravitational radiation takes away energy, momentum and angular momentum from the compact binary, such that the black holes finally merge. In the process, the spin of the dominant black hole is reoriented. On observational level, the spins are directly related to the jets, which can be seen at radio frequencies. Images of the X-shaped radio galaxies together with evidence on the age of the jets illustrate that the jets are reoriented, a phenomenon known as spin-flip. Based on the galaxy luminosity statistics we argue here that the typical galaxy encounters involve mass ratios between 1:3 to 1:30 for the central black holes. Based on the spin-orbit precession and gravitational radiation we also argue that for this typical mass ratio in the inspiral phase of the merger the initially dominant orbital angular momentum will become smaller than the spin, which will be reoriented. We prove here that the spin-flip phenomenon typically occurs already in the inspiral phase, and as such is describable by post-Newtonian techniques.
One of the central goals of LISA is the detection of gravitational waves from the merger of supermassive black holes. Contrary to stellar-mass black hole mergers, such events are expected to be rich X-ray sources due to the accretion of material from the circumbinary disks onto the black holes. The orbital dynamics before merger is also expected to modulate the resulting X-ray emission via Doppler boosting in a quasi-periodic way, and in a simple phase relation with the gravitational wave from the inspiral of the black holes. Detecting the X-ray source would enable a precise and early localization of the binary, thus allowing many telescopes to observe the very moment of the merger. Although identifying the correct X-ray source in the relatively large LISA sky localization will be challenging due to the presence of many confounding point sources, the quasi-periodic modulation may aid in the identification. We explore the practical feasibility of such idea. We simulate populations of merging supermassive black holes, their detection with LISA and their X-ray lightcurves using a simple model. Taking the parameters of the X-ray Telescope on the proposed NASA Transient Astrophysics Probe, we then design and simulate an observation campaign that searches for the modulated X-ray source while LISA is still observing the inspiral of the black holes. Assuming a fiducial LISA detection rate of $10$ mergers per year at redshift closer than $3.5$, we expect a few detections of modulated X-ray counterparts over the nominal duration of the LISA mission.
We present the first systematic study of strong binary-single and binary-binary black hole interactions with the inclusion of general relativity. When including general relativistic effects in strong encounters, dissipation of orbital energy from gravitational waves (GWs) can lead to captures and subsequent inspirals with appreciable eccentricities when entering the sensitive frequency ranges of the LIGO and Virgo GW detectors. In this study, we perform binary-binary and binary-single scattering experiments with general relativistic dynamics up through the 2.5 post-Newtonian order included, both in a controlled setting to gauge the importance of non-dissipative post-Newtonian terms and derive scaling relations for the cross-section of GW captures, as well as experiments tuned to the strong interactions from state-of-the art globular cluster models to assess the relative importance of the binary-binary channel at facilitating GW captures and the resultant eccentricity distributions of inspiral from channel. Although binary-binary interactions are 10-100 times less frequent in globular clusters than binary-single interactions, their longer lifetime and more complex dynamics leads to a higher probability for GW captures to occur during the encounter. We find that binary-binary interactions contribute 25-45% of the eccentric mergers which occur during strong black hole encounters in globular clusters, regardless of the properties of the cluster environment. The inclusion of higher multiplicity encounters in dense star clusters therefore have major implications on the predicted rates of highly eccentric binaries potentially detectable by the LIGO/Virgo network. As gravitational waveforms of eccentric inspirals are distinct from those generated by merging binaries which have circularized, measurements of eccentricity in such systems would highly constrain their formation scenario.
263 - Marc Favata 2009
Some astrophysical sources of gravitational waves can produce a memory effect, which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensors contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an effective-one-body (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to a redshift of two. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to gravitate.
87 - Yubo Su , Bin Liu , Dong Lai 2021
Many proposed scenarios for black hole (BH) mergers involve a tertiary companion that induces von Zeipel-Lidov-Kozai (ZLK) eccentricity cycles in the inner binary. An attractive feature of such mechanisms is the enhanced merger probability when the octupole-order effects, also known as the eccentric Kozai mechanism, are important. This can be the case when the tertiary is of comparable mass to the binary components. Since the octupole strength [$propto (1-q)/(1+q)$] increases with decreasing binary mass ratio $q$, such ZLK-induced mergers favor binaries with smaller mass ratios. We use a combination of numerical and analytical approaches to fully characterize the octupole-enhanced binary BH mergers and provide analytical criteria for efficiently calculating the strength of this enhancement. We show that for hierarchical triples with semi-major axis ratio $a/a_{rm out}gtrsim 0.01$-$0.02$, the binary merger fraction can increase by a large factor (up to $sim 20$) as $q$ decreases from unity to $0.2$. The resulting mass ratio distribution for merging binary BHs produced in this scenario is in tension with the observed distribution obtained by the LIGO/VIRGO collaboration, although significant uncertainties remain about the initial distribution of binary BH masses and mass ratios.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا