Do you want to publish a course? Click here

Odd Khovanov homology

153   0   0.0 ( 0 )
 Added by Peter S. Ozsvath
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We describe an invariant of links in the three-sphere which is closely related to Khovanovs Jones polynomial homology. Our construction replaces the symmetric algebra appearing in Khovanovs definition with an exterior algebra. The two invariants have the same reduction modulo 2, but differ over the rationals. There is a reduced version which is a link invariant whose graded Euler characteristic is the normalized Jones polynomial.



rate research

Read More

We review the construction and context of a stable homotopy refinement of Khovanov homology.
We prove that Khovanov homology with coefficients in $mathbb{Z}/2mathbb{Z}$ detects the $(2,5)$ torus knot. Our proof makes use of a wide range of deep tools in Floer homology, Khovanov homology, and Khovanov homotopy. We combine these tools with classical results on the dynamics of surface homeomorphisms to reduce the detection question to a problem about mutually braided unknots, which we then solve with computer assistance.
For each link L in S^3 and every quantum grading j, we construct a stable homotopy type X^j_o(L) whose cohomology recovers Ozsvath-Rasmussen-Szabos odd Khovanov homology, H_i(X^j_o(L)) = Kh^{i,j}_o(L), following a construction of Lawson-Lipshitz-Sarkar of the even Khovanov stable homotopy type. Furthermore, the odd Khovanov homotopy type carries a Z/2 action whose fixed point set is a desuspension of the even Khovanov homotopy type. We also construct a Z/2 action on an even Khovanov homotopy type, with fixed point set a desuspension of X^j_o(L).
Extending ideas of Hedden-Ni, we show that the module structure on Khovanov homology detects split links. We also prove an analogue for untwisted Heegaard Floer homology of the branched double cover. Technical results proved along the way include two interpretations of the module structure on untwisted Heegaard Floer homology in terms of twisted Heegaard Floer homology and the fact that the module structure on the reduced Khovanov complex of a link is well-defined up to quasi-isomorphism.
168 - Hongjian Yang 2021
Given an annular link $L$, there is a corresponding augmented link $widetilde{L}$ in $S^3$ obtained by adding a meridian unknot component to $L$. In this paper, we construct a spectral sequence with the second page isomorphic to the annular Khovanov homology of $L$ and it converges to the reduced Khovanov homology of $widetilde{L}$. As an application, we classify all the links with the minimal rank of annular Khovanov homology. We also give a proof that annular Khovanov homology detects unlinks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا