Do you want to publish a course? Click here

Annular Khovanov homology and augmented links

169   0   0.0 ( 0 )
 Added by Hongjian Yang
 Publication date 2021
  fields
and research's language is English
 Authors Hongjian Yang




Ask ChatGPT about the research

Given an annular link $L$, there is a corresponding augmented link $widetilde{L}$ in $S^3$ obtained by adding a meridian unknot component to $L$. In this paper, we construct a spectral sequence with the second page isomorphic to the annular Khovanov homology of $L$ and it converges to the reduced Khovanov homology of $widetilde{L}$. As an application, we classify all the links with the minimal rank of annular Khovanov homology. We also give a proof that annular Khovanov homology detects unlinks.



rate research

Read More

We prove that the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, A x I, has the structure of a bifiltered complex whose filtered chain homotopy type is an invariant of the isotopy class of L in A x I. Using ideas of Ozsvath-Stipsicz-Szabo as reinterpreted by Livingston, we use this structure to define a family of annular Rasmussen invariants that yield information about annular and non-annular cobordisms. Focusing on the special case of annular links obtained as braid closures, we use the behavior of the annular Rasmussen invariants to obtain a necessary condition for braid quasipositivity and a sufficient condition for right-veeringness.
Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular Khovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a knotted Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot.
Extending ideas of Hedden-Ni, we show that the module structure on Khovanov homology detects split links. We also prove an analogue for untwisted Heegaard Floer homology of the branched double cover. Technical results proved along the way include two interpretations of the module structure on untwisted Heegaard Floer homology in terms of twisted Heegaard Floer homology and the fact that the module structure on the reduced Khovanov complex of a link is well-defined up to quasi-isomorphism.
We introduce a class of links strictly containing quasi-alternating links for which mod 2 reduced Khovanov homology is always thin. We compute the framed instanton homology for double branched covers of such links. Aligning certain dotted markings on a link with bundle data over the branched cover, we also provide many computations of framed instanton homology in the presence of a non-trivial real 3-plane bundle. We discuss evidence for a spectral sequence from the twisted Khovanov homology of a link with mod 2 coefficients to the framed instanton homology of the double branched cover. We also discuss the relevant mod 4 gradings.
We review the construction and context of a stable homotopy refinement of Khovanov homology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا