Do you want to publish a course? Click here

Critical charge dynamics of superconducting LSCO thin films probed by complex microwave spectroscopy: Anomalous changes of the universality class by hole doping

138   0   0.0 ( 0 )
 Added by Takeyoshi Ohashi
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the critical charge dynamics of the superconducting to the normal-state transition for LSCO thin films with a wide range of the Sr concentration, by measuring the frequency-dependent excess parts of the complex microwave conductivity, which is induced by the superconducting fluctuations. We present a dynamic scaling analysis of the complex fluctuation conductivity, which includes the information on the universality class and the dimensionality of the critical charge dynamics as a function of the Sr concentration, the film thickness and the magnetic field. In our previous study (H. Kitano et al., Phys. Rev. B 73, 092504 (2006).), the 2D-XY critical dynamics for underdoped LSCO and the 3D-XY critical dynamics for optimally doped LSCO were reported. In this study, we observed a novel two-dimensional unknown critical charge dynamics for overdoped thin films from x=0.17 to 0.20, which is clearly distinguished from the 2D-XY critical dynamics. Through the systematic measurements by changing the film thickness or by applying small magnetic field, it was confirmed that this unusual behavior, which is referred as 2D-U below, was not induced by the finite size effect but was intrinsic to the overdoped LSCO. Thus, it was found that the critical behavior in the phase diagram of LSCO is classified into the following three types; (i) 2D-XY for underdoped region, (ii) 3D-XY for optimally doped region, and (iii) 2D-U for overdoped region. In other words, the dimensionality in the critical charge dynamics is changed twice with hole doping. We discuss possible origins of such anomalous dimensional crossovers with hole doping, including an interpretation based on the possible existence of a hidden quantum critical point near the optimally doped region.



rate research

Read More

376 - H. Kitano , T. Ohashi , A. Maeda 2008
We present a high-resolution microwave spectrometer to measure the frequency-dependent complex conductivity of a superconducting thin film near the critical temperature. The instrument is based on a broadband measurement of the complex reflection coefficient, $S_{rm 11}$, of a coaxial transmission line, which is terminated to a thin film sample with the electrodes in a Corbino disk shape. In the vicinity of the critical temperature, the standard calibration technique using three known standards fails to extract the strong frequency dependence of the complex conductivity induced by the superconducting fluctuations. This is because a small unexpected difference between the phase parts of $S_{rm 11}$ for a short and load standards gives rise to a large error in the detailed frequency dependence of the complex conductivity near the superconducting transition. We demonstrate that a new calibration procedure using the normal-state conductivity of a sample as a load standard resolves this difficulty. The high quality performance of this spectrometer, which covers the frequency range between 0.1 GHz and 10 GHz, the temperature range down to 10 K, and the magnetic field range up to 1 T, is illustrated by the experimental results on several thin films of both conventional and high temperature superconductors.
203 - Ce Huang , Enze Zhang , Yong Zhang 2020
The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorder influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magnetic fields in 2D superconductors imposes constraints on the universality of quantum criticality. Here, we discover the tunable universality class of superconductor-metal transition by changing the disorder strength in $beta$-W films with varying thickness. The finite-size scaling uncovers the switch of universality class: quantum Griffiths singularity to multiple quantum criticality at a critical thickness of $t_{c perp 1}sim 8 nm$ and then from multiple quantum criticality to single criticality at $t_{cperp 2}sim 16 nm$. Moreover, the superconducting-metal transition is observed for the first time under in-plane magnetic fields and the universality class is changed at $t_{c parallel }sim 8 nm$. The discovery of tunable universality class under both out-of-plane and in-plane magnetic fields provides broad information for the disorder effect on superconducting-metal transitions and quantum criticality.
The carrier concentration of Tl2Ba2CaCu2O8 films was modified by annealing in N2 gas. X-ray analysis of the structure and the oxygen content revealed a correspondence between carrier concentration and oxygen depletion. The TC and nonlinear surface impedance was measured using a dielectric resonator and the nonlinearity slope parameter r=dXS/dRS was found to converge to unity at the critical temperature, indicating a dominance of Josephson fluxon hysteresis on the nonlinearity. Highly inductive nonlinearity was observed in a small range of doping levels between 0.180<p<0.195 holes/Cu, which does not include the optimal doping level of 0.16 holes/Cu.
The two tone intermodulation distortion arising in MgB2 thin films synthesized by hybrid physical-chemical vapour deposition is studied in order to probe the influence of the two bands on the nonlinear response of this superconductor. The measurements are carried out by using a dielectrically loaded copper cavity operating at 7 GHz. Microwave data on samples having critical temperatures above 41 K, very low resistivity values, and residual resistivity ratio larger than 10, are shown. The dependence of the nonlinear surface losses and of the third order intermodulation products on the power feeding the cavity and on the temperature is analyzed. At low power, the signal arising from distortion versus temperature shows the intrinsic s-wave behavior expected for this compound. Data are compared with measurements performed on Nb and YBCO thin films using the same technique.
The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni$^{1+}$ cations possess nominally the same 3d$^9$ configuration as Cu$^{2+}$ in high-$T_C$ cuprates, the electronic structure consistencies and variances remain elusive, due to the lack of direct experimental probes. Here, we present a soft x-ray photoemission spectroscopy study on both parent and doped infinite-layer Pr-nickelate thin films with a doped perovskite reference. By identifying the Ni character with resonant photoemission and comparison to density function theory + U calculations, we estimate U ~ 5 eV, smaller than the charge transfer energy $Delta$ ~ 8 eV, in contrast to the cuprates being charge transfer insulators. Near the Fermi level (EF), we observe a signature of rare-earth spectral intensity in the parent compound, which is depleted upon doping. The parent compound, self-doped from rare-earth electrons, exhibits higher density of states at EF but manifests weaker superconducting instability than the Sr-doped case, demonstrating a complex interplay between the strongly-correlated Ni 3d and the weakly-interacting rare-earth 5d states in these oxide-intermetallic nickelates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا