No Arabic abstract
The present generation of ground-based Very High Energy (VHE) gamma-ray observatories consist of arrays of up to four large (> 12m diameter) light collectors quite similar to those used by R. Hanbury Brown to measure stellar diameters by Intensity Interferometry in the late 60s. VHE gamma-ray observatories to be constructed over the coming decade will involve several tens of telescopes of similar or greater sizes. Used as intensity interferometers, they will provide hundreds of independent baselines. Now is the right time to re-assess the potential of intensity interferometry so that it can be taken into consideration in the design of these large facilities.
In this poster contribution we highlight the equivalence between an Imaging Air Cherenkov Telescope (IACT) array and an Intensity Interferometer for a range of technical requirements. We touch on the differences between a Michelson and an Intensity Interferometer and give a brief overview of the current IACT arrays, their upgrades and next generation concepts (CTA, AGIS, completion 2015). The latter are foreseen to include 30-90 telescopes that will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains 50 micro-arcseconds resolution for a limiting V magnitude of ~8.5. This technique opens the possibility of a wide range of studies, amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we discuss possibilities for using IACT arrays as optical Intensity Interferometers.
Intensity interferometry exploits a quantum optical effect in order to measure objects with extremely small angular scales. The first experiment to use this technique was the Narrabri intensity interferometer, which was successfully used in the 1970s to measure 32 stellar diameters at optical wavelengths; some as small as 0.4 milli-arcseconds. The advantage of this technique, in comparison with Michelson interferometers, is that it requires only relatively crude, but large, light collectors equipped with fast (nanosecond) photon detectors. Ground-based gamma-ray telescope arrays have similar specifications, and a number of these observatories are now operating worldwide, with more extensive installations planned for the future. These future instruments (CTA, AGIS, completion 2015) with 30-90 telescopes will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains $50 mu$-arcsecond resolution for a limiting visual magnitude ~8.5. Phase information can be extracted from the interferometric measurement with phase closure, allowing image reconstruction. This technique opens the possibility of a wide range of studies amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we focuse on the astrophysical potential of an intensity interferometer utilising planned new gamma-ray instrumentation.
We propose a new approach, based on the Hanbury Brown and Twiss intensity interferometry, to transform a Cherenkov telescope to its equivalent optical telescope. We show that, based on the use of photonics components borrowed from quantum-optical applications, we can recover spatial details of the observed source down to the diffraction limit of the Cherenkov telescope, set by its diameter at the mean wavelength of observation. For this, we propose to apply aperture synthesis techniques from pairwise and triple correlation of sub-pupil intensities, in order to reconstruct the image of a celestial source from its Fourier moduli and phase information, despite atmospheric turbulence. We examine the sensitivity of the method, i.e. limiting magnitude, and its implementation on existing or future high energy arrays of Cherenkov telescopes. We show that despite its poor optical quality compared to extremely large optical telescopes under construction, a Cherenkov telescope can provide diffraction limited imaging of celestial sources, in particular at the visible, down to violet wavelengths.
In this paper we describe the different software and hardware elements of a mini-telescope for the detection of cosmic rays and gamma-rays using the Cherenkov light emitted by their induced particle showers in the atmosphere. We estimate the physics reach of the standalone mini-telescope and present some results of the measurements done at the Sauverny Observatory of the University of Geneva and at the Saint-Luc Observatory, which demonstrate the ability of the telescope to observe cosmic rays with energy above about 100 TeV. Such a mini-telescope can constitute a cost-effective out-trigger array that can surround other gamma-ray telescopes or extended air showers detector arrays. Its development was born out of the desire to illustrate to students and amateurs the cosmic ray and gamma-ray detection from ground, as an example of what is done in experiments using larger telescopes. As a matter of fact, a mini-telescope can be used in outreach night events. While outreach is becoming more and more important in the scientific community to raise interest in the general public, the realisation of the mini-telescope is also a powerful way to train students on instrumentation such as photosensors, their associated electronics, acquisition software and data taking. In particular, this mini-telescope uses silicon photomultipliers (SiPM) and the dedicated ASIC, CITIROC.
High angular resolution observations at optical wavelengths provide valuable insights in stellar astrophysics, directly measuring fundamental stellar parameters, and probing stellar atmospheres, circumstellar disks, elongation of rapidly rotating stars, and pulsations of Cepheid variable stars. The angular size of most stars are of order one milli-arcsecond or less, and to spatially resolve stellar disks and features at this scale requires an optical interferometer using an array of telescopes with baselines on the order of hundreds of meters. We report on the successful implementation of a stellar intensity interferometry system developed for the four VERITAS imaging atmospheric-Cherenkov telescopes. The system was used to measure the angular diameter of the two sub-mas stars $beta$ Canis Majoris and $epsilon$ Orionis with a precision better than 5%. The system utilizes an off-line approach where starlight intensity fluctuations recorded at each telescope are correlated post-observation. The technique can be readily scaled onto tens to hundreds of telescopes, providing a capability that has proven technically challenging to current generation optical amplitude interferometry observatories. This work demonstrates the feasibility of performing astrophysical measurements with imaging atmospheric-Cherenkov telescope arrays as intensity interferometers and the promise for integrating an intensity interferometry system within future observatories such as the Cherenkov Telescope Array.