No Arabic abstract
We study a continuous-time dynamical system that models the evolving distribution of genotypes in an infinite population where genomes may have infinitely many or even a continuum of loci, mutations accumulate along lineages without back-mutation, added mutations reduce fitness, and recombination occurs on a faster time scale than mutation and selection. Some features of the model, such as existence and uniqueness of solutions and convergence to the dynamical system of an approximating sequence of discrete time models, were presented in earlier work by Evans, Steinsaltz, and Wachter for quite general selective costs. Here we study a special case where the selective cost of a genotype with a given accumulation of ancestral mutations from a wild type ancestor is a sum of costs attributable to each individual mutation plus successive interaction contributions from each $k$-tuple of mutations for $k$ up to some finite ``degree. Using ideas from complex chemical reaction networks and a novel Lyapunov function, we establish that the phenomenon of mutation-selection balance occurs for such selection costs under mild conditions. That is, we show that the dynamical system has a unique equilibrium and that it converges to this equilibrium from all initial conditions.
We investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Our model arises when we incorporate very general recombination mechanisms into a previous model of mutation and selection from Steinsaltz, Evans and Wachter (2005) and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. Our motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging. We establish the existence and uniqueness of the dynamical system, provide conditions for the existence and stability of equilibrium states, and prove that our continuous-time dynamical system is the limit of a sequence of discrete-time infinite population mutation-selection-recombination models in the standard asymptotic regime where selection and mutation are weak relative to recombination and both scale at the same infinitesimal rate in the limit.
In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of n*n games in the limit of weak selection.
Recently, the selection-recombination equation with a single selected site and an arbitrary number of neutral sites was solved by means of the ancestral selection-recombination graph. Here, we introduce a more accessible approach, namely the ancestral initiation graph. The construction is based on a discretisation of the selection-recombination equation. We apply our method to systematically explain a long-standing observation concerning the dynamics of linkage disequilibrium between two neutral loci hitchhiking along with a selected one. In particular, this clarifies the nontrivial dependence on the position of the selected site.
It is well known that rather general mutation-recombination models can be solved algorithmically (though not in closed form) by means of Haldane linearization. The price to be paid is that one has to work with a multiple tensor product of the state space one started from. Here, we present a relevant subclass of such models, in continuous time, with independent mutation events at the sites, and crossover events between them. It admits a closed solution of the corresponding differential equation on the basis of the original state space, and also closed expressions for the linkage disequilibria, derived by means of Mobius inversion. As an extra benefit, the approach can be extended to a model with selection of additive type across sites. We also derive a necessary and sufficient criterion for the mean fitness to be a Lyapunov function and determine the asymptotic behaviour of the solutions.
The common understanding of protein evolution has been that neutral or slightly deleterious mutations are fixed by random drift, and evolutionary rate is determined primarily by the proportion of neutral mutations. However, recent studies have revealed that highly expressed genes evolve slowly because of fitness costs due to misfolded proteins. Here we study selection maintaining protein stability. Protein fitness is taken to be $s = kappa exp(betaDelta G) (1 - exp(betaDeltaDelta G))$, where $s$ and $DeltaDelta G$ are selective advantage and stability change of a mutant protein, $Delta G$ is the folding free energy of the wild-type protein, and $kappa$ represents protein abundance and indispensability. The distribution of $DeltaDelta G$ is approximated to be a bi-Gaussian function, which represents structurally slightly- or highly-constrained sites. Also, the mean of the distribution is negatively proportional to $Delta G$. The evolution of this gene has an equilibrium ($Delta G_e$) of protein stability, the range of which is consistent with experimental values. The probability distribution of $K_a/K_s$, the ratio of nonsynonymous to synonymous substitution rate per site, over fixed mutants in the vicinity of the equilibrium shows that nearly neutral selection is predominant only in low-abundant, non-essential proteins of $Delta G_e > -2.5$ kcal/mol. In the other proteins, positive selection on stabilizing mutations is significant to maintain protein stability at equilibrium as well as random drift on slightly negative mutations, although the average $langle K_a/K_s rangle$ is less than 1. Slow evolutionary rates can be caused by high protein abundance/indispensability, which produces positive shifts of $DeltaDelta G$ through decreasing $Delta G_e$, and by strong structural constraints, which directly make $DeltaDelta G$ more positive.