No Arabic abstract
In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of n*n games in the limit of weak selection.
We study a continuous-time dynamical system that models the evolving distribution of genotypes in an infinite population where genomes may have infinitely many or even a continuum of loci, mutations accumulate along lineages without back-mutation, added mutations reduce fitness, and recombination occurs on a faster time scale than mutation and selection. Some features of the model, such as existence and uniqueness of solutions and convergence to the dynamical system of an approximating sequence of discrete time models, were presented in earlier work by Evans, Steinsaltz, and Wachter for quite general selective costs. Here we study a special case where the selective cost of a genotype with a given accumulation of ancestral mutations from a wild type ancestor is a sum of costs attributable to each individual mutation plus successive interaction contributions from each $k$-tuple of mutations for $k$ up to some finite ``degree. Using ideas from complex chemical reaction networks and a novel Lyapunov function, we establish that the phenomenon of mutation-selection balance occurs for such selection costs under mild conditions. That is, we show that the dynamical system has a unique equilibrium and that it converges to this equilibrium from all initial conditions.
We investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Our model arises when we incorporate very general recombination mechanisms into a previous model of mutation and selection from Steinsaltz, Evans and Wachter (2005) and take the relative strength of mutation and selection to be sufficiently small. The resulting dynamical system is a flow of measures on the space of loci. Each such measure is the intensity measure of a Poisson random measure on the space of loci: the points of a realization of the random measure record the set of loci at which the genotype of a uniformly chosen individual differs from a reference wild type due to an accumulation of ancestral mutations. Our motivation for working in such a general setting is to provide a basis for understanding mutation-driven changes in age-specific demographic schedules that arise from the complex interaction of many genes, and hence to develop a framework for understanding the evolution of aging. We establish the existence and uniqueness of the dynamical system, provide conditions for the existence and stability of equilibrium states, and prove that our continuous-time dynamical system is the limit of a sequence of discrete-time infinite population mutation-selection-recombination models in the standard asymptotic regime where selection and mutation are weak relative to recombination and both scale at the same infinitesimal rate in the limit.
We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed population means that any two individuals are equally likely to interact. In particular we consider the average abundances of two strategies, A and B, under mutation and selection. The game dynamical interaction between the two strategies is given by the 2x2 payoff matrix [(a,b), (c,d)]. It has previously been shown that A is more abundant than B, if (N-2)a+Nb>Nc+(N-2)d. This result has been derived for particular stochastic processes that operate either in the limit of asymptotically small mutation rates or in the limit of weak selection. Here we show that this result holds in fact for a wide class of stochastic birth-death processes for arbitrary mutation rate and for any intensity of selection.
Since Press and Dysons ingenious discovery of ZD (zero-determinant) strategy in the repeated Prisoners Dilemma game, several studies have confirmed the existence of ZD strategy in repeated multiplayer social dilemmas. However, few researches study the evolutionary performance of multiplayer ZD strategies, especially from a theoretical perspective. Here, we use a newly proposed state-clustering method to theoretically analyze the evolutionary dynamics of two representative ZD strategies: generous ZD strategies and extortionate ZD strategies. Apart from the competitions between the two strategies and some classical strategies, we consider two new settings for multiplayer ZD strategies: competitions in the whole ZD strategy space and competitions in the space of all memory-1 strategies. Besides, we investigate the influence of level of generosity and extortion on the evolutionary dynamics of generous and extortionate ZD, which was commonly ignored in previous studies. Theoretical results show players with limited generosity are at an advantageous place and extortioners extorting more severely hold their ground more readily. Our results may provide new insights into better understanding the evolutionary dynamics of ZD strategies in repeated multiplayer games.
The common understanding of protein evolution has been that neutral or slightly deleterious mutations are fixed by random drift, and evolutionary rate is determined primarily by the proportion of neutral mutations. However, recent studies have revealed that highly expressed genes evolve slowly because of fitness costs due to misfolded proteins. Here we study selection maintaining protein stability. Protein fitness is taken to be $s = kappa exp(betaDelta G) (1 - exp(betaDeltaDelta G))$, where $s$ and $DeltaDelta G$ are selective advantage and stability change of a mutant protein, $Delta G$ is the folding free energy of the wild-type protein, and $kappa$ represents protein abundance and indispensability. The distribution of $DeltaDelta G$ is approximated to be a bi-Gaussian function, which represents structurally slightly- or highly-constrained sites. Also, the mean of the distribution is negatively proportional to $Delta G$. The evolution of this gene has an equilibrium ($Delta G_e$) of protein stability, the range of which is consistent with experimental values. The probability distribution of $K_a/K_s$, the ratio of nonsynonymous to synonymous substitution rate per site, over fixed mutants in the vicinity of the equilibrium shows that nearly neutral selection is predominant only in low-abundant, non-essential proteins of $Delta G_e > -2.5$ kcal/mol. In the other proteins, positive selection on stabilizing mutations is significant to maintain protein stability at equilibrium as well as random drift on slightly negative mutations, although the average $langle K_a/K_s rangle$ is less than 1. Slow evolutionary rates can be caused by high protein abundance/indispensability, which produces positive shifts of $DeltaDelta G$ through decreasing $Delta G_e$, and by strong structural constraints, which directly make $DeltaDelta G$ more positive.