No Arabic abstract
In this paper we compute the Galois cohomology of the pro-p completion of primitive link groups. Here, a primitive link group is the fundamental group of a tame link in the 3-sphere whose linking number diagram is irreducible modulo p (e.g. none of the linking numbers is divisible by p). The result is that (with Z/pZ-coefficients) the Galois cohomology is naturally isomorphic to the Z/pZ-cohomology of the discrete link group. The main application of this result is that for such groups the Baum-Connes conjecture or the Atiyah conjecture are true for every finite extension (or even every elementary amenable extension), if they are true for the group itself.
Given a Lie group $G$ with finitely many components and a compact Lie group A which acts on $G$ by automorphisms, we prove that there always exists an A-invariant maximal compact subgroup K of G, and that for every such K, the natural map $H^1(A,K)to H^1(A,G)$ is bijective. This generalizes a classical result of Serre [6] and a recent result in [1].
Let $G$ be a finitely generated group with a finite generating set $S$. For $gin G$, let $l_S(g)$ be the length of the shortest word over $S$ representing $g$. The growth series of $G$ with respect to $S$ is the series $A(t) = sum_{n=0}^infty a_n t^n$, where $a_n$ is the number of elements of $G$ with $l_S(g)=n$. If $A(t)$ can be expressed as a rational function of $t$, then $G$ is said to have a rational growth function. We calculate explicitly the rational growth functions of $(p,q)$-torus link groups for any $p, q > 1.$ As an application, we show that their growth rates are Perron numbers.
Let E/Q be an elliptic curve and p be a prime number, and let G be the Galois group of the extension of Q obtained by adjoining the coordinates of the p-torsion points on E. We determine all cases when the Galois cohomology group H^1(G, E[p]) does not vanish, and investigate the analogous question for E[p^i] when i>1. We include an application to the verification of certain cases of the Birch and Swinnerton-Dyer conjecture, and another application to the Grunwald-Wang problem for elliptic curves.
In this paper we develop methods for classifying Baker-Richter-Szymiks Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss-Hopkins obstruction theory, and give descent-theoretic tools, applying Luries work on $infty$-categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $E$, we find that the algebraic Azumaya algebras whose coefficient ring is projective are governed by the Brauer-Wall group of $pi_0(E)$, recovering a result of Baker-Richter-Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin-Tate spectra have either 4 or 2 Morita equivalence classes depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $Bbb Z/8 times Bbb Z/2$. Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$-algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an exotic $KO$-algebra with the same coefficient ring as $End_{KO}(KU)$. This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$, previously studied by Mathew and Stojanoska.
This paper is devoted to the computation of the space $H_b^2(Gamma,H;mathbb{R})$, where $Gamma$ is a free group of finite rank $ngeq 2$ and $H$ is a subgroup of finite rank. More precisely we prove that $H$ has infinite index in $Gamma$ if and only if $H_b^2(Gamma,H;mathbb{R})$ is not trivial, and furthermore, if and only if there is an isometric embedding $oplus_infty^nmathcal{D}(mathbb{Z})hookrightarrow H_b^2(Gamma,H;mathbb{R})$, where $mathcal{D}(mathbb{Z})$ is the space of bounded alternating functions on $mathbb{Z}$ equipped with the defect norm.