Do you want to publish a course? Click here

Relative second bounded cohomology of free groups

169   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to the computation of the space $H_b^2(Gamma,H;mathbb{R})$, where $Gamma$ is a free group of finite rank $ngeq 2$ and $H$ is a subgroup of finite rank. More precisely we prove that $H$ has infinite index in $Gamma$ if and only if $H_b^2(Gamma,H;mathbb{R})$ is not trivial, and furthermore, if and only if there is an isometric embedding $oplus_infty^nmathcal{D}(mathbb{Z})hookrightarrow H_b^2(Gamma,H;mathbb{R})$, where $mathcal{D}(mathbb{Z})$ is the space of bounded alternating functions on $mathbb{Z}$ equipped with the defect norm.



rate research

Read More

Using a probabilistic argument we show that the second bounded cohomology of an acylindrically hyperbolic group $G$ (e.g., a non-elementary hyperbolic or relatively hyperbolic group, non-exceptional mapping class group, ${rm Out}(F_n)$, dots) embeds via the natural restriction maps into the inverse limit of the second bounded cohomologies of its virtually free subgroups, and in fact even into the inverse limit of the second bounded cohomologies of its hyperbolically embedded virtually free subgroups. This result is new and non-trivial even in the case where $G$ is a (non-free) hyperbolic group. The corresponding statement fails in general for the third bounded cohomology, even for surface groups.
Given a group acting on a Gromov hyperbolic space, Bestvina and Fujiwara introduced the WPD property --- weak proper discontinuity --- for studying the 2nd bounded cohomology of the group. We carry out a more general study of second bounded cohomology using a really weak property discontinuity property known as WWPD that was introduced by Bestvina, Bromberg, and Fujiwara.
We show that for acylindrically hyperbolic groups $Gamma$ (with no nontrivial finite normal subgroups) and arbitrary unitary representation $rho$ of $Gamma$ in a (nonzero) uniformly convex Banach space the vector space $H^2_b(Gamma;rho)$ is infinite dimensional. The result was known for the regular representations on $ell^p(Gamma)$ with $1<p<infty$ by a different argument. But our result is new even for a non-abelian free group in this great generality for representations, and also the case for acylindrically hyperbolic groups follows as an application.
It is proved that the continuous bounded cohomology of SL_2(k) vanishes in all positive degrees whenever k is a non-Archimedean local field. This holds more generally for boundary-transitive groups of tree automorphisms and implies low degree vanishing for SL_2 over S-integers.
We give explicit necessary and sufficient conditions for the abstract commensurability of certain families of 1-ended, hyperbolic groups, namely right-angled Coxeter groups defined by generalized theta-graphs and cycles of generalized theta-graphs, and geometric amalgams of free groups whose JSJ graphs are trees of diameter at most 4. We also show that if a geometric amalgam of free groups has JSJ graph a tree, then it is commensurable to a right-angled Coxeter group, and give an example of a geometric amalgam of free groups which is not quasi-isometric (hence not commensurable) to any group which is finitely generated by torsion elements. Our proofs involve a new geometric realization of the right-angled Coxeter groups we consider, such that covers corresponding to torsion-free, finite-index subgroups are surface amalgams.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا