Do you want to publish a course? Click here

The $mathcal{Q}_p$ Carleson Measure Problem

114   0   0.0 ( 0 )
 Added by Jie Xiao
 Publication date 2007
  fields
and research's language is English
 Authors Jie Xiao




Ask ChatGPT about the research

Let $mu$ be a nonnegative Borel measure on the open unit disk $mathbb{D}subsetmathbb{C}$. This note shows how to decide that the Mobius invariant space $mathcal{Q}_p$, covering $mathcal{BMOA}$ and $mathcal{B}$, is boundedly (resp., compactly) embedded in the quadratic tent-type space $T^infty_p(mu)$. Interestingly, the embedding result can be used to determine the boundedness (resp., the compactness) of the Volterra-type and multiplication operators on $mathcal{Q}_p$.



rate research

Read More

Fugledes conjecture in $mathbb{Q}_p$ is proved. That is to say, a Borel set of positive and finite Haar measure in $mathbb{Q}_p$ is a spectral set if and only if it tiles $mathbb{Q}_p$ by translation.
An old problem asks whether every compact group has a Haar-nonmeasurable subgroup. A series of earlier results reduce the problem to infinite metrizable profinite groups. We provide a positive answer, assuming a weak, potentially provable, consequence of the Continuum Hypothesis. We also establish the dual, Baire category analogue of this result.
156 - V. N. Dubinin , M. Vuorinen 2010
Let $E$ be a continuum in the closed unit disk $|z|le 1$ of the complex $z$-plane which divides the open disk $|z| < 1$ into $nge 2$ pairwise non-intersecting simply connected domains $D_k,$ such that each of the domains $D_k$ contains some point $a_k$ on a prescribed circle $|z| = rho, 0 <rho <1, k=1,...,n,. $ It is shown that for some increasing function $Psi,$ independent of $E$ and the choice of the points $a_k,$ the mean value of the harmonic measures $$ Psi^{-1}[ frac{1}{n} sum_{k=1}^{k} Psi(omega(a_k,E, D_k))] $$ is greater than or equal to the harmonic measure $omega(rho, E^*, D^*),,$ where $E^* = {z: z^n in [-1,0] }$ and $D^* ={z: |z|<1, |{rm arg} z| < pi/n} ,.$ This implies, for instance, a solution to a problem of R.W. Barnard, L. Cole, and A. Yu. Solynin concerning a lower estimate of the quantity $inf_{E} max_{k=1,...,n} omega(a_k,E, D_k),$ for arbitrary points of the circle $|z| = rho ,.$ These authors stated this hypothesis in the particular case when the points are equally distributed on the circle $|z| = rho ,.$
This is a survey on reverse Carleson measures for various Hilbert spaces of analytic functions. These spaces include Hardy, Bergman, certain harmonically weighted Dirichlet, Paley-Wiener, Fock, model, and de Branges-Rovnyak spaces.
We prove that the $mathcal{H}^p$-corona problem has a solution for convex domains of finite type in $mathbb{C}^n$, $n ge 2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا