Do you want to publish a course? Click here

The Distances of SNR W41 and overlapping HII regions

466   0   0.0 ( 0 )
 Added by Wenwu Tian
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

New HI images from the VLA Galactic Plane Survey show prominent absorption features associated with the supernovae remnant G23.3-0.3 (SNR W41). We highlight the HI absorption spectra and the $^{13}$CO emission spectra of eight small regions on the face of W41, including four HII regions, three non-thermal emission regions and one unclassified region. The maximum velocity of absorption for W41 is 78$pm$2 km/s and the CO cloud at radial velocity 95$pm$5 km/s is behind W41. Because an extended TeV source, a diffuse X-ray enhancement and a large molecular cloud at radial velocity 77$pm$5 km/s are also projected at the center of W41, these yield the kinematic distance of 3.9 to 4.5 kpc for W41. For HII regions, our analyses reveal that both G23.42-0.21 and G23.07+0.25 are at the far kinematic distances ($sim$9.9 kpc and $sim$ 10.6 kpc respectively) of their recombination-line velocities (103$pm$0.5 km/s and 89.6$pm$2.1 km/s respectively), G23.07-0.37 is at the near kinematic distance (4.4$pm$0.3 kpc) of its recombination-line velocity (82.7$pm$2.0 km/s), and G23.27-0.27 is probably at the near kinematic distance (4.1$pm$0.3 kpc) of its recombination-line velocity (76.1$pm$0.6 km/s).



rate research

Read More

We perform a multiwavelength study toward the SNR G18.1-0.1 and nearby several HII regions (infrared dust bubbles N21 and N22, and the HII regions G018.149-00.283 and G18.197-00.181). Our goal is to provide observational evidence supporting that massive stars usually born in clusters from the same molecular cloud, which then produce, along their evolution, different neighboring objects such as HII regions, interstellar bubbles and supernova remnants. We suggest that the objects analysed in this work belong to a same complex located at the distance of about 4 kpc. Using molecular data we inspected the interstellar medium toward this complex and from optical and X-ray observations we looked for OB-type stars in the region. Analysing public 13CO J=1--0 data we found several molecular structures very likely related to the HII region/SNR complex. We suggest that the molecular gas is very likely being swept and shaped by the expansion of the HII regions. From spectroscopic optical observations obtained with the 2.15 m telescope at CASLEO, Argentina, we discovered three O-type stars very likely exciting the bubbles N21 and N22, and an uncatalogued HII region northward bubble N22, respectively. Also we found four B0-5 stars, one toward the bubble N22 and the others within the HII region G18.149-0.283. By inspecting the Chandra Source Catalog we found two point X-ray sources and we suggest that one of them is an early O-type star. Finally we inspected the large scale interstellar medium around this region. We discovered a big molecular shell of about 70 pc x 28 pc in which the analysed complex appears to be located in its southern border.
Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-compact HII(UCHII) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young HII regions from radio SEDs in the search for potential HCHII regions, and (2) to use these physical properties to investigate their evolution. Method. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7 and ~0.7, respectively, toward 114 HII regions with rising-spectra between 1-5 GHz. We complement our observations with VLA archival data and construct SEDs in the range of 1-26 GHz and model them assuming an ionization-bounded HII region with uniform density. Results. Our sample has a mean electron density of ne=1.6E4cm^{-3}, diameter diam=0.14pc, and emission measure EM = 1.9E7pc*cm^{-6}. We identify 16 HCHII region candidates and 8 intermediate objects between the classes of HCHII and UCHII regions. The ne, diam, and EM change as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these HII regions and the dust absorption fraction tends to be more significant for more compact and younger HII regions. Conclusion. Young HII regions are commonly located in dusty clumps; HCHII regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.
81 - P.D. Klaassen 2017
High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M $>8$ M$_odot$), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments.We present high-resolution ($sim$ 0.5$$) ALMA observations of nine HII regions selected from the Red MSX Source (RMS) survey with compact radio emission and bolometric luminosities greater than 10$^4$ L$_odot$. We focus on the initial presentation of the data, including initial results from the radio recombination line H29$alpha$, some complementary molecules, and the 256 GHz continuum emission. Of the six (out of nine) regions with H29$alpha$ detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J=5-4)), often (but not always) finding theHII region had cleared its immediate vicinity of molecules. Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29$alpha$ emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region.
We have discovered a number of very small isolated HII regions 20-30 kpc from their nearest galaxy. The HII regions appear as tiny emission line dots (ELdots) in narrow band images obtained by the NOAO Survey for Ionization in Neutral Gas Galaxies (SINGG). We have spectroscopic confirmation of 5 isolated HII regions in 3 systems. The H-alpha luminosities of the HII regions are equivalent to the ionizing flux of only 1 large or a few small OB stars each. These stars appear to have formed in situ and represent atypical star formation in the low density environment of galaxy outskirts. In situ star formation in the intergalactic medium offers an alternative to galactic wind models to explain metal enrichment. In interacting systems (2 out of 3), isolated HII regions could be a starting point for tidal dwarf galaxies.
We report the first results of a long term program aiming to provide accurate independent estimates of the Hubble constant (H0) using the L-sigma distance estimator for Giant extragalactic HII regions (GEHR) and HII galaxies. We have used VLT and Subaru high dispersion spectroscopic observations of a local sample of HII galaxies, identified in the SDSS DR7 catalogue in order to re-define and improve the L(Hbeta)-sigma distance indicator and to determine the Hubble constant. To this end we utilized as local calibration or `anchor of this correlation, GEHR in nearby galaxies which have accurate distance measurements determined via primary indicators. Using our best sample of 69 nearby HII galaxies and 23 GEHR in 9 galaxies we obtain H0=74.3 +- 3.1 (statistical) +- 2.9 (systematic) km /s Mpc, in excellent agreement with, and independently confirming, the most recent SNe Ia based results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا