Do you want to publish a course? Click here

Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations

387   0   0.0 ( 0 )
 Added by Davide Marenduzzo
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently ``extensile rods, in the case of flow-aligning liquid crystals, and for sufficiently ``contractile ones for flow-tumbling materials. In a quasi-1D geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, re-arrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of ``convection rolls. These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behaviour of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behaviour of active nematics.



rate research

Read More

Active liquid crystals or active gels are soft materials which can be physically realised e.g. by preparing a solution of cytoskeletal filaments interacting with molecular motors. We study the hydrodynamics of an active liquid crystal in a slab-like geometry with various boundary conditions, by solving numerically its equations of motion via lattice Boltzmann simulations. In all cases we find that active liquid crystals can sustain spontaneous flow in steady state contrarily to their passive counterparts, and in agreement with recent theoretical predictions. We further find that conflicting anchoring conditions at the boundaries lead to spontaneous flow for any value of the activity parameter, while with unfrustrated anchoring at all boundaries spontaneous flow only occurs when the activity exceeds a critical threshold. We finally discuss the dynamic pathway leading to steady state in a few selected cases.
Active matter describes materials whose constituents are driven out of equilibrium by continuous energy consumption, for instance from ATP. Due to the orientable character of the constituents, active suspensions can attain liquid crystalline order and can be theoretically described as active liquid crystals. Their inherently nonequilibrium dynamics causes a range of new striking effects, that in most cases have been characterized with numerical simulations, using lattice Boltzmann models (LB). In many active biological systems chirality plays an important role. Biomolecules such as DNA, actin, or microtubules form helical structures which, at sufficiently high density and in the absence of active forces, tend to self-assemble into twisted cholesteric phases. Understanding the outcome of the interplay between chirality and activity is therefore an important and timely question. Studying a droplet of chiral matter in 3D, we have found evidence of a new motility mode, where the rotational motion of surface topological defects, that arrange in a fan-like pattern. The resulting regular propulsive motion due to the underlying chirality is a striking phenomenon that can be also used in practical applications. The use of a parallel (MPI) implementation of lattice Boltzmann models, and available HPC resources, have been of fundamental importance in conducting the study. We have used different HPC clusters and among these RECAS. This allowed us to conduct a scaling test performed on different computational infrastructures.
Collective behaviour in suspensions of microswimmers is often dominated by the impact of long-ranged hydrodynamic interactions. These phenomena include active turbulence, where suspensions of pusher bacteria at sufficient densities exhibit large-scale, chaotic flows. To study this collective phenomenon, we use large-scale (up to $N=3times 10^6$) particle-resolved lattice Boltzmann simulations of model microswimmers described by extended stresslets. Such system sizes enable us to obtain quantitative information about both the transition to active turbulence and characteristic features of the turbulent state itself. In the dilute limit, we test analytical predictions for a number of static and dynamic properties against our simulation results. For higher swimmer densities, where swimmer-swimmer interactions become significant, we numerically show that the length- and timescales of the turbulent flows increase steeply near the predicted finite-system transition density.
The ordering of particles in the drying process of a colloidal suspension is crucial in determining the properties of the resulting film. For example, microscopic inhomogeneities can lead to the formation of cracks and defects that can deteriorate the quality of the film considerably. This type of problem is inherently multiscale and here we study it numerically, using our recently developed method for the simulation of soft polymeric capsules in multicomponent fluids. We focus on the effect of the particle softness on the film microstructure during the drying phase and how it relates to the formation of defects. We quantify the order of the particles by measuring both the Voronoi entropy and the isotropic order parameter. Surprisingly, both observables exhibit a non-monotonic behaviour when the softness of the particles is increased. We further investigate the correlation between the interparticle interaction and the change in the microstructure during the evaporation phase. We observe that the rigid particles form chain-like structures that tend to scatter into small clusters when the particle softness is increased.
Active fluids are intrinsically out-of-equilibrium systems due to the internal energy injection of the active constituents. We show here that a transition from a motion-less isotropic state towards a flowing polar one can be possibly driven by the sole active injection through the action of polar-hydrodynamic interactions in absence of an ad hoc free-energy which favors the development of an ordered phase. In particular, we propose an analytical argument and we perform lattice Boltzmann simulations where the appearance of large temporal fluctuations in the polar fraction of the system is observed at the transition point. Moreover, we make use of a scale-to-scale analysis to unveil the energy transfer mechanism, proving that elastic absorption plays a relevant role in the overall dynamics of the system, contrary to what reported in previous works on the usual active gel theory where this term could be factually neglected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا