Do you want to publish a course? Click here

Nonrelativistic phase in gamma-ray burst afterglows

155   0   0.0 ( 0 )
 Added by Y. F. Huang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of multiband afterglows definitely shows that most $gamma$-ray bursts are of cosmological origin. $gamma$-ray bursts are found to be one of the most violent explosive phenomena in the Universe, in which astonishing ultra-relativistic motions are involved. In this article, the multiband observational characteristics of $gamma$-ray bursts and their afterglows are briefly reviewed. The standard model of $gamma$-ray bursts, i.e. the fireball model, is described. Emphasis is then put on the importance of the nonrelativistic phase of afterglows. The concept of deep Newtonian phase is elaborated. A generic dynamical model that is applicable in both the relativistic and nonrelativistic phases is introduced. Based on these elaborations, the overall afterglow behaviors, from the very early stages to the very late stages, can be conveniently calculated.



rate research

Read More

139 - D. A. Badjin 2013
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that thermal emission originating in heated dense shells around the GRB progenitor star can reproduce X-ray plateaus (like observed in GRB 050904, 070110) as well as deviations from a power law fading observed in optical afterglows of some GRBs (e.g. 020124, 030328, 030429X, 050904). Thermal radiation pressure in the heated circumburst shell dominates the gas pressure, producing rapid expansion of matter similar to supenova-like explosions close to opacity or radiation flux density jumps in the circumburst medium. This phenomenon can be responsible for so-called supernova bumps in optical afterglows of several GRBs. Such a `quasi-supernova suggests interpretation of the GRB-SN connection which does not directly involve the explosion of the GRB progenitor star.
Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright X-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid X-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.
116 - R. A. Burenin 2008
Variability on time scales delta t < t is observed in many gamma-ray burst afterglows. It is well known that there should be no such variability if the afterglow is emitted by external shock, which is produced by the interaction of ultrarelativistic ejecta with the ambient interstellar medium, within the framework of simple models. The corresponding constraints were established by Ioka et al. (2005) and in some cases are inconsistent with observations. On the other hand, if the motion is not relativistic, then the fast variability of the afterglow can be explained much more easily. In this connection we discuss various estimates of the time of the transition to subrelativistic motion in GRB source. We point out, that this transition should occur on an observed time scale of ~10 days. In the case of a higher density of the ambient interstellar medium ~10^2-10^4 cm^{-3} or dense stellar wind with dot M ~ 10^{-5} - 10^{-4} M_odot/year the transition to a subrelativistic motion can occur on a time scale of ~1 day. These densities may well be expected in star-forming regions and around massive Wolf-Rayet stars.
209 - G. Ghisellini 2008
We selected a sample of 33 Gamma Ray Bursts (GRBs) detected by Swift, with known redshift and optical extinction at the host frame. For these, we constructed the de-absorbed and K-corrected X-ray and optical rest frame light curves. These are modelled as the sum of two components: emission from the forward shock due to the interaction of a fireball with the circum-burst medium and an additional component, treated in a completely phenomenological way. The latter can be identified, among other possibilities, as late prompt emission produced by a long lived central engine with mechanisms similar to those responsible for the production of the standard early prompt radiation. Apart from flares or re-brightenings, that we do not model, we find a good agreement with the data, despite of their complexity and diversity. Although based in part on a phenomenological model with a relatively large number of free parameters, we believe that our findings are a first step towards the construction of a more physical scenario. Our approach allows us to interpret the behaviour of the optical and X-ray afterglows in a coherent way, by a relatively simple scenario. Within this context it is possible to explain why sometimes no jet break is observed; why, even if a jet break is observed, it is often chromatic; why the steepening after the jet break time is often shallower than predicted. Finally, the decay slope of the late prompt emission after the shallow phase is found to be remarkably similar to the time profile expected by the accretion rate of fall-back material (i.e. proportional to t^{-5/3}), suggesting that this can be the reason why the central engine can be active for a long time.
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; $gtrsim$~GeV) remains uncertain. The recent detection of sub-TeV emission from GRB~190114C by MAGIC raises further debate on what powers the very high-energy (VHE; $gtrsim 300$GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multi-wavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB~190114C, we find that its afterglow emission in the fermi-LAT band is synchrotron-dominated.The late-time fermi-LAT measurement (i.e., $tsim 10^4$~s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. $lesssim 3times 10^{-9},{rm erg,cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا