Do you want to publish a course? Click here

Inverse Compton Signatures of Gamma-Ray Burst Afterglows

73   0   0.0 ( 0 )
 Added by Hao Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; $gtrsim$~GeV) remains uncertain. The recent detection of sub-TeV emission from GRB~190114C by MAGIC raises further debate on what powers the very high-energy (VHE; $gtrsim 300$GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multi-wavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB~190114C, we find that its afterglow emission in the fermi-LAT band is synchrotron-dominated.The late-time fermi-LAT measurement (i.e., $tsim 10^4$~s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. $lesssim 3times 10^{-9},{rm erg,cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.



rate research

Read More

Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterised by an initial phase of bright and highly variable radiation in the keV-MeV band that is likely produced within the jet and lasts from milliseconds to minutes, known as the prompt emission. Subsequently, the interaction of the jet with the external medium generates external shock waves, responsible for the afterglow emission, which lasts from days to months, and occurs over a broad energy range, from the radio to the GeV bands. The afterglow emission is generally well explained as synchrotron radiation by electrons accelerated at the external shock. Recently, an intense, long-lasting emission between 0.2 and 1 TeV was observed from the GRB 190114C. Here we present the results of our multi-frequency observational campaign of GRB~190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from $5times10^{-6}$ up to $10^{12}$,eV. We find that the broadband spectral energy distribution is double-peaked, with the TeV emission constituting a distinct spectral component that has power comparable to the synchrotron component. This component is associated with the afterglow, and is satisfactorily explained by inverse Compton upscattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed TeV component are not atypical, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
139 - D. A. Badjin 2013
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that thermal emission originating in heated dense shells around the GRB progenitor star can reproduce X-ray plateaus (like observed in GRB 050904, 070110) as well as deviations from a power law fading observed in optical afterglows of some GRBs (e.g. 020124, 030328, 030429X, 050904). Thermal radiation pressure in the heated circumburst shell dominates the gas pressure, producing rapid expansion of matter similar to supenova-like explosions close to opacity or radiation flux density jumps in the circumburst medium. This phenomenon can be responsible for so-called supernova bumps in optical afterglows of several GRBs. Such a `quasi-supernova suggests interpretation of the GRB-SN connection which does not directly involve the explosion of the GRB progenitor star.
164 - K.Zhang , Z.B.Zhang , Y.F.Huang 2020
We systematically analyze three GRB samples named as radio-loud, radio-quiet and radio-none afterglows, respectively. It is shown that dichotomy of the radio-loud afterglows is not necessary. Interestingly, we find that the intrinsic durations ($T_{int}$), isotropic energies of prompt gamma-rays ($E_{gamma, iso}$) and redshifts ($z$) of their host galaxies are log-normally distributed for both the radio-loud and radio-quiet samples except those GRBs without any radio detections. Based on the distinct distributions of $T_{int}$, $E_{gamma, iso}$, the circum-burst medium density ($n$) and the isotropic equivalent energy of radio afterglows ($L_{ u,p}$), we confirm that the GRB radio afterglows are really better to be divided into the dim and the bright types. However, it is noticeable that the distributions of flux densities ($F_{host}$) from host galaxies of both classes of radio afterglows are intrinsically quite similar. Meanwhile, we point out that the radio-none sample is also obviously different from the above two samples with radio afterglows observed, according to the cumulative frequency distributions of the $T_{int}$ and the $E_{gamma, iso}$, together with correlations between $T_{int}$ and $z$. In addition, a positive correlation between $E_{gamma, iso}$ and $L_{ u,p}$ is found in the radio-loud samples especially for the supernova-associated GRBs. Besides, we also find this positive correlation in the radio-quiet sample. A negative correlation between $T_{int}$ and $z$ is confirmed to hold for the radio-quiet sample too. The dividing line between short and long GRBs in the rest frame is at $T_{int}simeq$1 s. Consequently, we propose that the radio-loud, the radio-quiet and the radio-none GRBs could be originated from different progenitors.
166 - Gu-Jing Lv 2011
In order to study the effect of dust extinction on the afterglow of gamma-ray bursts (GRBs), we carry out numerical calculations with high precision based on rigorous Mie theory and latest optical properties of interstellar dust grains, and analyze the different extinction curves produced by dust grains with different physical parameters. Our results indicate that the absolute extinction quantity is substantially determined by the medium density and metallicity. However, the shape of the extinction curve is mainly determined by the size distribution of the dust grains. If the dust grains aggregate to form larger ones, they will cause a flatter or grayer extinction curve with lower extinction quantity. On the contrary, if the dust grains are disassociated to smaller ones due to some uncertain processes, they will cause a steeper extinction curve with larger amount of extinction. These results might provide an important insight into understanding the origin of the optically dark GRBs.
We present a study of the intermediate regime between ultra-relativistic and nonrelativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the AMRVAC adaptive mesh refinement code. Spectra and light curves are calculated using a separate radiation code that, for the first time, links a parametrisation of the microphysics of shock acceleration, synchrotron self-absorption and electron cooling to a high-performance hydrodynamics simulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا