Do you want to publish a course? Click here

Global geometry on moduli of local systems for surfaces with boundary

63   0   0.0 ( 0 )
 Added by Junho Peter Whang
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We show that every coarse moduli space, parametrizing complex special linear rank two local systems with fixed boundary traces on a surface with nonempty boundary, is log Calabi-Yau in that it has a normal projective compactification with trivial log canonical divisor. We connect this to a novel symmetry of generating series for counts of essential multicurves on the surface.



rate research

Read More

Let M_0^R be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space H^4 and form the quotient by an arithmetic group to obtain an orbifold isomorphic to a component of the moduli space. There are five components. For each we describe the corresponding lattices in PO(4,1). We also derive several new and several old results on the topology of M_0^R. Let M_s^R be the moduli space of real cubic surfaces that are stable in the sense of geometric invariant theory. We show that this space carries a hyperbolic structure whose restriction to M_0^R is that just mentioned. The corresponding lattice in PO(4,1), for which we find an explicit fundamental domain, is nonarithmetic.
We study holomorphic $(n+1)$-chains $E_nto E_{n-1} to >... to E_0$ consisting of holomorphic vector bundles over a compact Riemann surface and homomorphisms between them. A notion of stability depending on $n$ real parameters was introduced in the work of the first two authors and moduli spaces were constructed by the third one. In this paper we study the variation of the moduli spaces with respect to the stability parameters. In particular we characterize a parameter region where the moduli spaces are birationally equivalent. A detailed study is given for the case of 3-chains, generalizing that of 2-chains (triples) in the work of Bradlow, Garcia-Prada and Gothen. Our work is motivated by the study of the topology of moduli spaces of Higgs bundles and their relation to representations of the fundamental group of the surface.
We compute the number of moduli of all irreducible components of the moduli space of smooth curves on Enriques surfaces. In most cases, the moduli maps to the moduli space of Prym curves are generically injective or dominant. Exceptional behaviour is related to existence of Enriques--Fano threefolds and to curves with nodal Prym-canonical model.
In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle, and the closely-related Bagger-Witten line bundle. We do this here for several Calabi-Yaus obtained in [DW09] as crepant resolutions of the orbifold quotient of the product of three elliptic curves. In particular we verify in these cases a recent claim of [GHKSST16] by noting that a power of the Hodge line bundle is trivial -- even though in most of these cases the Picard group is infinite.
Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor recognizable if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification. For polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا