No Arabic abstract
We discuss an acceleration mechanism for pulsars out of their supernova remnants based on asymmetric neutrino emission from quark matter in the presence of a strong magnetic field. The polarized electron spin fixes the neutrino emission from the direct quark Urca process in one direction along the magnetic field. We calculate the magnetic field strength which is required to polarize the electron spin as well as the required initial proto-neutron star temperature for a successfull acceleration mechanism. In addition we discuss the neutrino mean free paths in quark as well as in neutron matter which turn out to be very small. Consequently, the high neutrino interaction rates will wash out the asymmetry in neutrino emission. As a possible solution to this problem we take into account effects from colour superconductivity.
We discuss a pulsar acceleration mechanism based on asymmetric neutrino emission from the direct quark Urca process in the interior of proto neutron stars. The anisotropy is caused by a strong magnetic field which polarises the spin of the electrons opposite to the field direction. Due to parity violation the neutrinos and anti-neutrinos leave the star in one direction accelerating the pulsar. We calculate for varying quark chemical potentials the kick velocity in dependence of the quark phase temperature and its radius. Ignoring neutrino quark scattering we find that within a quark phase radius of 10 km and temperatures larger than 5 MeV kick velocities of 1000km s$^{-1}$ can be reached very easily. On the other hand taking into account the small neutrino mean free paths it seems impossible to reach velocities higher than 100km s$^{-1}$ even when including effects from colour superconductivity where the neutrino quark interactions are suppressed.
We show that Majoron emission from a hot nascent neutron star can be anisotropic in the presence of a strong magnetic field. If Majorons carry a non-negligible fraction of the supernova energy, the resulting recoil velocity of a neutron star can explain the observed velocities of pulsars.
Observations of radio pulsars have revealed that they have large velocities which may be greater than 1000 km/s. In this work, the efficacy of an active-sterile neutrino transformation mechanism to provide these large pulsar kicks is investigated. A phase-space based approach is adopted to follow the the transformation of active neutrinos to sterile neutrinos through an MSW-like resonance in the protoneutron star to refine an estimate to the magnitude of the pulsar kick that can be generated in such an event. The result is that this mechanism can create the large pulsar kicks that are observed while not overcooling the star.
It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated.
We study neutrino emission from direct Urca processes in pion condensed quark matter. In compact stars with high baryon density, the emission is dominated by the gapless modes of the pion condensation which leads to an enhanced emissivity. While for massless quarks the enhancement is not remarkable, the emissivity is significantly larger and the cooling of the condensed matter is considerably faster than that in normal quark matter when the mass difference between $u$- and $d$-quarks is sizable.