Do you want to publish a course? Click here

Neutrino Emission From Direct Urca Processes in Pion Condensed Quark Matter

129   0   0.0 ( 0 )
 Added by Xuguang Huang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study neutrino emission from direct Urca processes in pion condensed quark matter. In compact stars with high baryon density, the emission is dominated by the gapless modes of the pion condensation which leads to an enhanced emissivity. While for massless quarks the enhancement is not remarkable, the emissivity is significantly larger and the cooling of the condensed matter is considerably faster than that in normal quark matter when the mass difference between $u$- and $d$-quarks is sizable.



rate research

Read More

It is believed that quark matter can exist in neutron star interior if the baryon density is high enough. When there is a large isospin density, quark matter could be in a pion condensed phase. We compute neutrino emission from direct Urca processes in such a phase, particularly in the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) states. The neutrino emissivity and specific heat are obtained, from which the cooling rate is estimated.
117 - Naoto Yokoi , Eiji Saitoh 2016
We discuss a possible principle for detecting dark matter axions in galactic halos. If axions constitute a condensate in the Milky Way, stimulated emissions of the axions from a type of excitation in condensed matter can be detectable. We provide general mechanism for the dark matter emission, and, as a concrete example, an emission of dark matter axions from magnetic vortex strings in a type II superconductor are investigated along with possible experimental signatures.
The bulk viscosity of the neutron star matter due to the direct Urca processes involving nucleons, electrons and muons is studied taking into account possible superfluidity of nucleons in the neutron star cores. The cases of singlet-state pairing or triplet-state pairing (without and with nodes of the superfluid gap at the Fermi surface) of nucleons are considered. It is shown that the superfluidity may strongly reduce the bulk viscosity. The practical expressions for the superfluid reduction factors are obtained. For illustration, the bulk viscosity is calculated for two models of dense matter composed of neutrons, protons,electrons and muons. The presence of muons affects the bulk viscosity due to the direct Urca reactions involving electrons and produces additional comparable contribution due to the direct Urca reactions involving muons. The results can be useful for studying damping of vibrations of neutron stars with superfluid cores.
We present some results about dissipative processes in fermionic superfluids that are relevant for compact stars. At sufficiently low temperatures the transport properties of a superfluid are dominated by phonons. We report the values of the bulk viscosity, shear viscosity and thermal conductivity of phonons in quark matter at extremely high density and low temperature. Then, we present a new dissipative mechanism that can operate in compact stars and that is named rocket term. The effect of this dissipative mechanism on superfluid r-mode oscillations is sketched.
A potential way to distinguish tau-neutrinos from antineutrinos, below the tau-production threshold, but above the pion production one, is presented. It is based on the different behavior of the neutral current pion production off the nucleon, depending on whether it is induced by neutrinos or antineutrinos. This procedure for distinguishing tau-neutrinos from antineutrinos neither relies on any nuclear model, nor it is affected by any nuclear effect (distortion of the outgoing nucleon waves, etc...). We show that neutrino-antineutrino asymmetries occur both in the totally integrated cross sections and in the pion azimuthal differential distributions. To define the asymmetries for the latter distributions we just rely on Lorentz-invariance. All these asymmetries are independent of the lepton family and can be experimentally measured by using electron or muon neutrinos, due to the lepton family universality of the neutral current neutrino interaction. Nevertheless and to estimate their size, we have also used the chiral model of hep-ph/0701149 at intermediate energies. Results are really significant since the differences between neutrino and antineutrino induced reactions are always large in all physical channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا