Do you want to publish a course? Click here

Theoretical Interpretation of Experimental Data from Direct Dark Matter Detection

247   0   0.0 ( 0 )
 Added by Chung-Lin Shan
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for Dark Matter. Currently, the most promising method to detect WIMPs is the direct detection of the recoil energy deposited in a low-background laboratory detector due to elastic WIMP-nucleus scattering. So far the usual procedure has been to predict the event rate of direct detection of WIMPs based on some model(s) of the Galactic halo from cosmology and of WIMPs from elementary particle physics. The aim of this work is to invert this process. In this thesis I present methods which allow to reconstruct (the moments of) the WIMP velocity distribution function as well as to determine the WIMP mass from the recoil energy spectrum as well as from experimental data directly. The reconstruction of the velocity distribution function has been further extended to take into account the annual modulation of the event rate. Moreover, the reconstruction of the amplitude of the annual modulation of the velocity distribution and an alternative, better way for confirming the annual modulation of the event rate have been discussed. On the other hand, the determination of the WIMP mass by combining two (or more) experiments with different detector materials has been developed. All formulae and expressions given here are not only independent of the model of Galactic halo but also of that of WIMPs. This means that we need neither the as yet unknown WIMP density near the Earth nor the WIMP-nucleus cross section. The only information which we need is the measured recoil energies and their measuring times.



rate research

Read More

We present a new class of direct detection signals; absorption of fermionic dark matter. We enumerate the operators through dimension six which lead to fermionic absorption, study their direct detection prospects, and summarize additional constraints on their suppression scale. Such dark matter is inherently unstable as there is no symmetry which prevents dark matter decays. Nevertheless, we show that fermionic dark matter absorption can be observed in direct detection and neutrino experiments while ensuring consistency with the observed dark matter abundance and required lifetime. For dark matter masses well below the GeV scale, dedicated searches for these signals at current and future experiments can probe orders of magnitude of unexplored parameter space.
Weakly interacting massive particles (WIMPs) are one of the leading candidates for Dark Matter. So far we can use direct Dark Matter detection to estimate the mass of halo WIMPs only by fitting predicted recoil spectra to future experimental data. Here we develop a model-independent method for determining the WIMP mass by using experimental data directly. This method is independent of the as yet unknown WIMP density near the Earth as well as of the WIMP-nuclear cross section and can be used to extract information about WIMP mass with O(50) events.
123 - Chung-Lin Shan 2014
In this paper, we extended our earlier work on the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) and introduce the Bayesian fitting procedure to the theoretically predicted velocity distribution functions. In this reconstruction process, the (rough) velocity distribution reconstructed by using raw data from direct Dark Matter detection experiments directly, i.e. measured recoil energies, with one or more different target materials, has been used as reconstructed-input information. By assuming a fitting velocity distribution function and scanning the parameter space based on the Bayesian analysis, the astronomical characteristic parameters, e.g. the Solar and Earths Galactic velocities, will be pinned down as the output results. Our Monte-Carlo simulations show that this Bayesian scanning procedure could reconstruct the true (input) WIMP velocity distribution function pretty precisely with negligible systematic deviations of the reconstructed characteristic Solar and Earths velocities and 1 sigma statistical uncertainties of <~ 20 km/s. Moreover, for the use of an improper fitting velocity distribution function, our reconstruction process could still offer useful information about the shape of the velocity distribution. In addition, by comparing these estimates to theoretical predictions, one could distinguish different (basic) functional forms of the theoretically predicted one-dimensional WIMP velocity distribution function with 2 sigma to 4 sigma confidence levels.
234 - Chung-Lin Shan 2015
In this paper, we investigate the modification of our expressions developed for the model-independent data analysis procedure of the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) with a non-negligible experimental threshold energy. Our numerical simulations show that, for a minimal reconstructable velocity of as high as O(200) km/s, our model-independent modification of the estimator for the normalization constant could provide precise reconstructed velocity distribution points to match the true WIMP velocity distribution with a <~ 10% bias.
Dark matter could emerge along with the Higgs as a composite pseudo-Nambu-Goldstone boson $chi$ with decay constant $fsim mathrm{TeV}$. This type of WIMP is especially compelling because its leading interaction with the Standard Model, the derivative Higgs portal, has the correct annihilation strength for thermal freeze-out if $m_chi sim O(100)$ GeV, but is negligible in direct detection experiments due to the very small momentum transfer. The explicit breaking of the shift symmetry which radiatively generates $m_chi$, however, introduces non-derivative DM interactions. In existing realizations a marginal Higgs portal coupling $lambda$ is generated with size comparable to the Higgs quartic, and thus well within reach of XENON1T. Here, we present and analyze the interesting case where the pattern of explicit symmetry breaking naturally suppresses $lambda$ beyond the reach of current and future direct detection experiments. If the DM acquires mass from bottom quark loops, the bottom quark also mediates suppressed DM-nucleus scattering with cross sections that will be eventually probed by LZ. Alternatively, the DM can obtain mass from gauging its stabilizing $U(1)$ symmetry. No direct detection signal is expected even at future facilities, but the introduction of a dark photon $gamma_D$ has a number of phenomenological implications which we study in detail, treating $m_{gamma_D}$ as a free parameter. Complementary probes of the dark sector include indirect DM detection, DM self-interactions, and extra radiation, as well as collider experiments. We frame our discussion in an effective field theory, motivating our parameter choices with a detailed analysis of an $SO(7)/SO(6)$ composite Higgs model, which can yield either scenario at low energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا