Do you want to publish a course? Click here

Neutrino-driven explosions twenty years after SN1987A

250   0   0.0 ( 0 )
 Added by Hans-Thomas Janka
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The neutrino-heating mechanism remains a viable possibility for the cause of the explosion in a wide mass range of supernova progenitors. This is demonstrated by recent two-dimensional hydrodynamic simulations with detailed, energy-dependent neutrino transport. Neutrino-driven explosions were not only found for stars in the range of 8-10 solar masses with ONeMg cores and in case of the iron core collapse of a progenitor with 11 solar masses, but also for a ``typical progenitor model of 15 solar masses. For such more massive stars, however, the explosion occurs significantly later than so far thought, and is crucially supported by large-amplitude bipolar oscillations due to the nonradial standing accretion shock instability (SASI), whose low (dipole and quadrupole) modes can develop large growth rates in conditions where convective instability is damped or even suppressed. The dominance of low-mode deformation at the time of shock revival has been recognized as a possible explanation of large pulsar kicks and of large-scale mixing phenomena observed in supernovae like SN 1987A.



rate research

Read More

The program HDECAY determines the partial decay widths and branching ratios of the Higgs bosons within the Standard Model with three and four generations of fermions, including the case when the Higgs couplings are rescaled, a general two--Higgs doublet model where the Higgs sector is extended and incorporates five physical states and its most studied incarnation, the minimal supersymmetric Standard Model (MSSM). The program addresses all decay channels including the dominant higher-order effects such as radiative corrections and multi-body channels. Since the first launch of the program, more than twenty years ago, important aspects and new ingredients have been incorporated. In this update of the program description, some of the developments are summarized while others are discussed in some detail.
224 - Jean-Pierre Luminet 2013
What is the shape of the Universe? Is it finite or infinite ? Is space multi-connected to create ghost images of faraway cosmic sources? After a dark age period, the field of cosmic topology has now become one of the major concerns in astronomy and cosmology, not only from theorists but also from observational astronomers. Here I give a personal account of the spectacular progress in the field since the beginning of the 1990s, when I started to work in it.
The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.
236 - Peter B. Weichman 2008
A concise, somewhat personal, review of the problem of superfluidity and quantum criticality in regular and disordered interacting Bose systems is given, concentrating on general features and important symmetries that are exhibited in different parts of the phase diagram, and that govern the different possible types of critical behavior. A number of exact results for various insulating phase boundaries, which may be used to constrain the results of numerical simulations, can be derived using large rare region type arguments. The nature of the insulator-superfluid transition is explored through general scaling arguments, exact model calculations in one dimension, numerical results in two dimensions, and approximate renormalization group results in higher dimensions. Experiments on He-4 adsorbed in porous Vycor glass, on thin film superconductors, and magnetically trapped atomic vapors in a periodic optical potential, are used to illustrate many of the concepts.
We present observations of the optical ``moving lines in spectra of the Galactic relativistic jet source SS433 spread over a twenty year baseline from 1979 to 1999. The red/blue-shifts of the lines reveal the apparent precession of the jet axis in SS433, and we present a new determination of the precession parameters based on these data. We investigate the amplitude and nature of time- and phase-dependent deviations from the kinematic model for the jet precession, including an upper limit on any precessional period derivative of $dot P < 5 times 10^{-5}$. We also dicuss the implications of these results for the origins of the relativistic jets in SS433.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا