Do you want to publish a course? Click here

Bose-Einstein condensation: Twenty years after

143   0   0.0 ( 0 )
 Added by Dumitru Mihalache
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.



rate research

Read More

We have observed Bose-Einstein condensation of an atomic gas in the (quasi-)uniform three-dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution and the anisotropic time-of-flight expansion of the condensate. The critical temperature agrees with the theoretical prediction for a uniform Bose gas. The momentum distribution of our non-condensed quantum-degenerate gas is also clearly distinct from the conventional case of a harmonically trapped sample and close to the expected distribution in a uniform system. We confirm the coherence of our condensate in a matter-wave interference experiment. Our experiments open many new possibilities for fundamental studies of many-body physics.
A new method of cooling positronium down is proposed to realize Bose-Einstein condensation of positronium. We perform detail studies about three processes (1) thermalization processes between positronium and silica walls of a cavity, (2) Ps-Ps scatterings and (3) Laser cooling. The thermalization process is shown to be not sufficient for BEC. Ps-Ps collision is also shown to make a big effect on the cooling performance. We combine both methods and establish an efficient cooling for BEC. We also propose a new optical laser system for the cooling.
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einsteins equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.
151 - K. Kwon , K. Mukherjee , S. Huh 2021
We observe experimentally the spontaneous formation of star-shaped surface patterns in driven Bose-Einstein condensates. Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole ($l=2$) to heptagon modes ($l=7$), are parametrically excited by modulating the scattering length near the Feshbach resonance. An effective Mathieu equation and Floquet analysis are utilized, relating the instability conditions to the dispersion of the surface modes in a trapped superfluid. Identifying the resonant frequencies of the patterns, we precisely measure the dispersion relation of the collective excitations. The oscillation amplitude of the surface excitations increases exponentially during the modulation. We find that only the $l=6$ mode is unstable due to its emergent coupling with the dipole motion of the cloud. Our experimental results are in excellent agreement with the mean-field framework. Our work opens a new pathway for generating higher-lying collective excitations with applications, such as the probing of exotic properties of quantum fluids and providing a generation mechanism of quantum turbulence.
We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the 84Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10^5 atoms. This puts 84Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا