Attaching a superconductor in good contact with a normal metal makes rise to a proximity effect where the superconducting correlations leak into the normal metal. An additional contact close to the first one makes it possible to carry a supercurrent through the metal. Forcing this supercurrent flow along with an additional quasiparticle current from one or many normal-metal reservoirs makes rise to many interesting effects. The supercurrent can be used to tune the local energy distribution function of the electrons. This mechanism also leads to finite thermoelectric effects even in the presence of electron-hole symmetry. Here we review these effects and discuss to which extent the existing observations of thermoelectric effects in metallic samples can be explained through the use of the dirty-limit quasiclassical theory.
We investigate the electron-phonon cooling power in disordered electronic systems with a special focus on mesoscopic superconducting proximity structures. Employing the quasiclassical Keldysh Greens function method, we obtain a general expression for the cooling power perturbative in the electron-phonon coupling, but valid for arbitrary electronic systems out of equilibrium. We apply our theory to several disordered electronic systems valid for an arbitrary relation between the thermal phonon wavelength and the electronic mean free path due to impurity scattering. Besides recovering the known results for bulk normal metals and BCS superconductors, we consider two experimentally relevant geometries of superconductor-normal metal proximity contacts. Both structures feature a significantly suppressed cooling power at low temperatures related to the existence of a minigap in the quasiparticle spectrum. This improved isolation low cooling feature in combination with the high tunability makes such structures highly promising candidates for quantum calorimetry
We theoretically study the local density of states in superconducting proximity structure where two superconducting terminals are attached to a side surface of a normal-metal wire. Using the quasiclassical Greens function method, the energy spectrum is obtained for both of spin-singlet $s$-wave and spin-triplet $p$-wave junctions. In both of the cases, the decay length of the proximity effect at the zero temperature is limited by a depairing effect due to inelastic scatterings. In addition to the depairing effect, in $p$-wave junctions, the decay length depends sensitively on the transparency at the junction interfaces, which is a unique property to odd-parity superconductors where the anomalous proximity effect occurs.
We study thermoelectric effects in superconducting nanobridges and demonstrate that the magnitude of these effects can be comparable or even larger than that for a macroscopic superconducting circuit. The reason is related to a possibility to have very large gradients of electron temperature within the nanobridge. The corresponding heat conductivity problems are considered. It is shown that the nanoscale devices allow one to get rid of masking effects related to spurious magnetic fields.
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscillatory behavior of the superconducting pair wave function in the F-layer. Then, we concentrate on recent theoretical predictions for S/F layer systems. These are a) generation of odd triplet superconductivity in the F-layer and b) ferromagnetism induced in the S-layer below the superconducting transition temperature $T_{c}$ (inverse proximity effect). The second part of the review is devoted to discussion of experiments relevant to the theoretical predictions of the first part. In particular, we present results of measurements of the critical temperature $T_{c}$ as a function of the thickness of F-layers and we review experiments indicating existence of odd triplet superconductivity, cryptoferromagnetism and inverse proximity effect.
Motivated by the recent findings of unconventional superconductivity in $mathrm{CoSi_2 / TiSi_2}$ heterostructures, we study the effect of interface induced Rashba spin orbit coupling on the conductance of a three terminal T shape superconducting device. We calculate the differential conductance for this device within the quasi-classical formalism that includes the mixing of triplet-singlet pairing due to the Rashba spin orbit coupling. We discuss our result in the light of the conductance spectra reported by Chiu {it et al.} for $mathrm{CoSi_2 / TiSi_2}$ heterostructures.