Do you want to publish a course? Click here

On Gauge Symmetry Breaking via Euclidean Time Component of Gauge Fields

167   0   0.0 ( 0 )
 Added by Kazunori Takenaga
 Publication date 2007
  fields
and research's language is English
 Authors M. Sakamoto




Ask ChatGPT about the research

We study gauge theories with/without an extra dimension at finite temperature, in which there are two kinds of order parameters of gauge symmetry breaking. The one is the zero mode of the gauge field for the Euclidean time direction and the other is that for the direction of the extra dimension. We evaluate the effective potential for the zero modes in one-loop approximation and investigate the vacuum configuration in detail. Our analyses show that gauge symmetry can be broken only through the zero mode for the direction of the extra dimension and no nontrivial vacuum configuration of the zero mode for the Euclidean time direction is found.



rate research

Read More

157 - Thomas Appelquist 1997
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches describe the formation of a gluino condensate. With $N_f$ flavors of quark and squark fields, and with $N_f$ below a certain critical value, the coupled gap equations have a solution for quark and gluino condensate formation, corresponding to breaking of global symmetries and of supersymmetry. This appears to disagree with the newer nonperturbative techniques, but the reliability of gap equations in this context and whether the solution represents the ground state remain unclear.
Parity-Time (PT) symmetric systems have been widely recognized as fundamental building blocks for the development of novel, ultra-sensitive opto-electronic devices. However, arguably one of their major drawbacks is that they rely on non-linear amplification processes that could limit their potential applications, particularly in the quantum realm. In this work, we show both theoretically and experimentally that gain-loss, PT-symmetric systems can be designed by means of linear, time-modulated components. More specifically, by making use of a state-of-the-art, fully reconfigurable electronic platform, we demonstrate that PT-symmetry breaking transitions can be observed by properly modulating the inductance (L) and the capacitance (C) of a single LC circuit. Importantly, the lossless dynamic-variations of the electrical components used in our LC circuits allow us to control the static and periodic (Floquet) regimes of our PT-symmetric system. Our results challenge the conventional wisdom that at least two-oscillator systems are needed for observing PT-symmetric phenomena, and provide a new perspective in the field of synthetic PT symmetry with important implications for sensing, energy transfer and topology.
The derivation of Feynman rules for unparticles carrying standard model quantum numbers is discussed. In particular, this note demonstrates that an application of Mandelstams approach to constructing a gauge-invariant action reproduces for unparticles the vertices one obtains through the usual minimal coupling scheme; other non-trivial requirements are satisfied as well. This approach is compared to an alternative method 0801.0892 that has recently been constructed by A. L. Licht.
We demonstrate that $SO(N_{c})$ gauge theories with matter fields in the vector representation confine due to monopole condensation and break the $SU(N_{F})$ chiral symmetry to $SO(N_{F})$ via the quark bilinear. Our results are obtained by perturbing the ${cal N}=1$ supersymmetric theory with anomaly-mediated supersymmetry breaking.
We calculate Lorentz-invariant and gauge-invariant quantities characterizing the product $sum_a D_R(T^a) F^a_{mu u}$, where $D_R(T^a)$ denotes the matrix for the generator $T^a$ in the representation $R=$ fundamental and adjoint, for color SU(3). We also present analogous results for an SU(2) gauge theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا