Do you want to publish a course? Click here

Parity-Time Symmetry via Time-Dependent non-Unitary Gauge Fields

351   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Parity-Time (PT) symmetric systems have been widely recognized as fundamental building blocks for the development of novel, ultra-sensitive opto-electronic devices. However, arguably one of their major drawbacks is that they rely on non-linear amplification processes that could limit their potential applications, particularly in the quantum realm. In this work, we show both theoretically and experimentally that gain-loss, PT-symmetric systems can be designed by means of linear, time-modulated components. More specifically, by making use of a state-of-the-art, fully reconfigurable electronic platform, we demonstrate that PT-symmetry breaking transitions can be observed by properly modulating the inductance (L) and the capacitance (C) of a single LC circuit. Importantly, the lossless dynamic-variations of the electrical components used in our LC circuits allow us to control the static and periodic (Floquet) regimes of our PT-symmetric system. Our results challenge the conventional wisdom that at least two-oscillator systems are needed for observing PT-symmetric phenomena, and provide a new perspective in the field of synthetic PT symmetry with important implications for sensing, energy transfer and topology.



rate research

Read More

182 - M. Sakamoto 2007
We study gauge theories with/without an extra dimension at finite temperature, in which there are two kinds of order parameters of gauge symmetry breaking. The one is the zero mode of the gauge field for the Euclidean time direction and the other is that for the direction of the extra dimension. We evaluate the effective potential for the zero modes in one-loop approximation and investigate the vacuum configuration in detail. Our analyses show that gauge symmetry can be broken only through the zero mode for the direction of the extra dimension and no nontrivial vacuum configuration of the zero mode for the Euclidean time direction is found.
We introduce here the concept of establishing Parity-time symmetry through a gauge transformation involving a shift of the mirror plane for the Parity operation. The corresponding unitary transformation on the systems constitutive matrix allows us to generate and explore a family of equivalent Parity-time symmetric systems. We further derive that unidirectional zero reflection can always be associated with a gauged PT-symmetry and demonstrate this experimentally using a microstrip transmission-line with magnetoelectric coupling. This study allows us to use bianisotropy as a simple route to realize and explore exceptional point behaviour of PT-symmetric or generally non-Hermitian systems.
We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of $SU(N)$ generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.
Parity-time (PT) symmetry in non-Hermitian optical systems promises distinct optical effects and applications not found in conservative optics. Its counterpart, anti-PT symmetry, subscribes another class of intriguing optical phenomena and implies complementary techniques for exotic light manipulation. Despite exciting progress, so far anti-PT symmetry has only been realized in bulky systems or with optical gain. Here, we report an on-chip realization of non-Hermitian optics with anti-PT symmetry, by using a fully-passive, nanophotonic platform consisting of three evanescently coupled waveguides. By depositing a metal film on the center waveguide to introduce strong loss, an anti-PT system is realized. Using microheaters to tune the waveguides refractive indices, striking behaviors are observed such as equal power splitting, synchronized amplitude modulation, phase-controlled dissipation, and transition from anti-PT symmetry to its broken phase. Our results highlight exotic anti-Hermitian nanophotonics to be consolidated with conventional circuits on the same chip, whereby valuable chip devices can be created for quantum optics studies and scalable information processing.
Canonical quantum mechanics postulates Hermitian Hamiltonians to ensure real eigenvalues. Counterintuitively, a non-Hermitian Hamiltonian, satisfying combined parity-time (PT) symmetry, could display entirely real spectra above some phase-transition threshold. Such a counterintuitive discovery has aroused extensive theoretical interest in extending canonical quantum theory by including non-Hermitian but PT-symmetric operators in the last two decades. Despite much fundamental theoretical success in the development of PT-symmetric quantum mechanics, an experimental observation of pseudo-Hermiticity remains elusive as these systems with a complex potential seem absent in Nature. But nevertheless, the notion of PT symmetry has highly survived in many other branches of physics including optics, photonics, AMO physics, acoustics, electronic circuits, material science over the past ten years, and others, where a judicious balance of gain and loss constitutes a PT-symmetric system. Here, although we concentrate upon reviewing recent progress on PT symmetry in optical microcavity systems, we also wish to present some new results that may help to accelerate the research in the area. Such compound photonic structures with gain and loss provide a powerful platform for testing various theoretical proposals on PT symmetry, and initiate new possibilities for shaping optical beams and pulses beyond conservative structures. Throughout this article there is an effort to clearly present the physical aspects of PT-symmetry in optical microcavity systems, but mathematical formulations are reduced to the indispensable ones. Readers who prefer strict mathematical treatments should resort to the extensive list of references. Despite the rapid progress on the subject, new ideas and applications of PT symmetry using optical microcavities are still expected in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا